期刊导航

论文摘要

基于三域特征提取和GS-SVM的ECG信号智能分类技术研究

Research on intelligent classification of ECG signals based on three domain features extraction and GS-SVM

作者:方红帏(四川大学电气工程学院);赵涛(四川大学电气工程学院);佃松宜(四川大学电气工程学院)

Author:FangHongwei(College of Electrical Engineering,Sichuan University);Zhao Tao(College of Electrical Engineering,Sichuan University);Dian Songyi(College of Electrical Engineering,Sichuan University)

收稿日期:2019-03-22          年卷(期)页码:2020,57(2):297-303

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:心律失常检测;ECG信号分类;三域特征提取;信号预处理;基于网格搜索的SVM

Key words:Arrhythmia detection; ECG signal classification; Three-domain features extraction; Grid search based SVM

基金项目:国家自然科学基金(61703291);四川省科技厅应用基础研究项目(2016JY0085)

中文摘要

近年来,基于单域的特征提取方法已经得到广泛的研究,并被用于心律失常的分类检测.事实上,多域特征提取在其分类中往往表现得更好.本文利用MIT/BIH心律失常数据库中的48组ECG信号进行预处理,从时域、频域和小波域提取了信号的三域特征,这些特征从各个方面充分表征了ECG信号的性质.再利用基于网格搜索的SVM结合归一化特征可将ECG信号划分为常见的4类.该方法的总体精度达到98.01%,f1分值为0.9800,对ECG信号的检测性能良好,相对目前绝大多数ECG信号分类器具有更强的泛化能力.

英文摘要

Single domain based feature extraction has been extensively studied and is used to detect and classify Arrhythmia recently. In fact, multi domain feature extraction tends to perform better in classification. In this paper, three domain features are extracted from time domain, frequency domain and wavelet domain using pre processed ECG signals taken from 48 data sets in MIT/BIH arrhythmia database. These features fully characterize the nature of the ECG signals from various aspects. In the final stage, ECG signals are classified into four classes by the normalized features combined with grid search based SVM, the overall accuracy and F1 score of the proposed method is 98.01% and 0.9800 respectively, it performs well in detection and classification of ECG signals and has better generalization against the most results reported so far.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065