期刊导航

论文摘要

基于多层次动态门控推理网络的文本蕴含识别

Multi level dynamic gated inference network for recognizing textual entailment

作者:张芮(四川大学计算机学院);杨煦晨(四川大学计算机学院);琚生根(四川大学计算机学院);刘宁宁(四川大学计算机学院);谢正文(四川大学计算机学院);王婧妍(四川大学计算机学院)

Author:ZhangRui(College of Computer Science, Sichuan University, Chengdu 610065, China);YANG Xu-Chen(College of Computer Science, Sichuan University, Chengdu 610065, China);JU Sheng-Gen(College of Computer Science, Sichuan University, Chengdu 610065, China);LIU NingNing(College of Computer Science, Sichuan University, Chengdu 610065, China);XIE Zheng-Wen(College of Computer Science, Sichuan University, Chengdu 610065, China);WANG Jing-Yan(College of Computer Science, Sichuan University, Chengdu 610065, China)

收稿日期:2019-08-26          年卷(期)页码:2020,57(2):277-283

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:多层次动态推理;sgMatch-LSTM;注意力机制;文本蕴含

Key words:Multi-level Dynamic Inference; sgMatch-LSTM; Attention Mechanism; Textual Entailment

基金项目:四川省新一代人工智能重大专项(2018GZDZX0039); 四川省科技厅重点研发项目 (2018GZ0182)

中文摘要

现有的文本蕴含模型通常计算一次词级别注意力得到两段文本在不同层面的交互特征,但对于文本不同层面的理解,不同重要词的注意力应该是不同的,并且一次词级注意力推理仅能捕捉到文本对局部特征.针对这个问题,提出一种多层次动态门控推理网络(MDGIN),该网络结合了词级别信息的细粒度推理和句子级别门控机制来动态捕捉文本对的语义信息,并采用不同注意力计算方式提取文本对不同层面的语义特征,共同推理文本对的蕴含关系.本文在两个文本蕴含数据集上均做了实验,相较于基准模型和现有主流模型,准确率提升了0.4%-1.7%,通过消融分析,进一步验证了本文模型各部分结构的有效性.

英文摘要

Most existing models of recognizing textual entailment (RTE) get the interaction features between a premise and a hypothesis by an attention matrix at word level. However, the attention of important words should be different with the degree of understanding from diverse aspects, and only the local features are captured. To solve the problem above, the model with Multi level Dynamic Gated Inference Network (MDGIN) is proposed, which combines the fine grained word level information and sentence level gating mechanism to dynamically capture the relationships of text pairs. Moreover, the model extracts the different semantic features by diverse attention ways. In this paper, experiments are carried out on two textual datasets. Compared with the benchmark models and the existing mainstream models, the accuracy is improved by 0.4%~1.7%. The effectiveness of each part of the model is further verified by ablation analysis.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065