期刊导航

论文摘要

基于数据流多维特征的移动流量识别方法研究

Research on mobile traffic identification based on multidimensional characteristics of data flow

作者:武思齐(四川大学计算机学院);王俊峰(四川大学空天科学与工程学院, 成都 610065)

Author:WU SiQi(College of Computer Science, Sichuan University, Chengdu 610065, China);WANG JunFeng(School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China)

收稿日期:2019-07-03          年卷(期)页码:2020,57(2):247-254

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:数据流; 移动流量识别; 操作系统分类; 机器学习; 集成学习

Key words:Data flow; Mobile traffic identification; Operating system classification; Machine learning; Ensemble learning

基金项目:国家重点研发计划项目(2018YFB0804503),装备预研教育部联合基金(6141A02011607,6141A020223)和四川省重点研发计划项目(18ZDYF3867, 2017GZDZX0002)

中文摘要

随着移动互联网的快速发展,移动设备的数量激增至历史新高。从大量混杂流量中识别出移动流量并对流量进 行分析,是深入研究移动互联网特性的第一步,同时可以为移动网络测量与管理、移动安全和隐私保护􏰀供有价值的信 息。本文综合整理了网络流量识别的常见方法,􏰀出了基于数据流多维统计特征的移动流量识别方法。该方法从硬件特 征、操作系统指纹和用户使用习惯三个方面􏰀取了数据流中具有代表性的特征并对特征进行分析,使用集成学习的方法 生成识别模型。移动流量的识别准确率和主流的 5 种操作系统流量分类的准确率都达到了 99%以上。与本文中􏰀到的 UAFs 方法相比,准确率􏰀高了 8%左右。本方法􏰀取的特征具有多维性并且具有实际意义,整合了网络层和传输层的数 据流特征,相较于使用深度数据包检测的方法,基于数据流多维特征的方法同样适用于加密流量的分类。

英文摘要

With the rapid development of mobile Internet, the number of mobile devices has surged to a record high. Recognizing and analyzing mobile traffic from a large number of mixed traffic is the first step to study the characteristics of mobile Internet. It can also provide valuable information for mobile network measurement and management, mobile security and privacy protection. This paper summarizes the common methods of network traffic identification, and proposes a mobile traffic identification method based on multidimensional statistical characteristics of data flow. This method extracts the representative features of data stream from three aspects: hardware features, operating system fingerprints and user usage habits, and analyses the features. An ensemble learning method is used to generate the recognition model. The accuracy of mobile traffic identification and five mainstream operation classification results are more than 99%. Compared with the UAFs method mentioned in this paper, the accuracy is improved by about 8%. The features extracted by this method are multidimensional and have practical significance. The features integrate the data flow characteristics network layer and transport layer. Compared with the method using deep packet inspection detection, this method is suitable for the classification of encrypted traffic.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065