期刊导航

论文摘要

一种预测判断蛋白质与DNA相互作用位点的新方法

A new method to predict Protein-DNA binding sites

作者:王皆恒(四川大学生命科学学院 四川省分子生物与生物技术重点实验室);李校(四川大学生命科学学院 四川省分子生物与生物技术重点实验室)

Author:WANG Jie-Heng(Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University);LI Xiao(Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University)

收稿日期:2020-02-26          年卷(期)页码:2020,57(5):1009-1014

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:蛋白质-DNA相互作用位点预测; 支持向量机; 序列匹配算法

Key words:Predict "Protein-DNA binding sites"; SVM-based predictor; Sequence-based predictor

基金项目:国家自然科学基金(61001149)

中文摘要

蛋白质-DNA相互作用位点在各类生理生化反应中扮演重要角色.本论文旨在构建一种可以准确预测“相互作用位点”的方法:PdDNA,其内容主要包括支持向量机和序列匹配器.支持向量机通过提取相互作用位点中心残基的特征进行训练并分类,序列匹配器则通过蛋白质特征矩阵(PSSM)对氨基酸序列进行相关性评估,对二者结果进行归一化整合,得到最终的预测结果.利用公开数据集PDNA_62,我们的PdDNA预测准确率为86.87%.为进一步验证PdDNA可靠性,我们还自建了PDNA_224数据集,其预测准确率为83.07%,处于较高水平.因此PdDNA是一种有效的“蛋白质-DNA相互作用位点”预测方法.

英文摘要

Protein-DNA binding sites play an important role in various physiological and biochemical reactions. In this paper, we establish a special method and algorithm based on Bioinformatics to forecast Protein-DNA binding sites, we call it PdDNA. According to our method we have 2 mainly algorithm: SVM-based predictor and sequence-based predictor. SVM-based predictor is trained and classified by extracting features of central residues at binding sites, and sequence-based predictor scores amino acid sequences for correlation by Position-Specific Scoring Matrix(PSSM). Normalization and integration of the two results to obtain the final forecast. According to our algorithm, it predicts DNA-binding sites with 86.87% accuracy when tested on PDNA_62 dataset. Otherwise, we established PDNA_224 data set, and PdDNA also has 83.07% accuracy at a high level. Therefore, PdDNA is an effective method for predicting "Protein-DNA binding sites ".

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065