期刊导航

论文摘要

带时变时延效应的模糊神经网络均方指数输入的状态稳定性

Mean-square exponentially input-to-state stability of stochastic fuzzy neural networks with time-varying delays

作者:周伟松(四川大学数学学院);赵永红(四川大学数学学院)

Author:ZHOU Wei-Song(College of Mathematics, Sichuan University);ZHAO Yong-Hong(College of Mathematics, Sichuan University)

收稿日期:2015-04-21          年卷(期)页码:2016,53(4):731-735

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:神经网络;均方指数输入;时变时延;

Key words:neural networks,Mean-square exponentially input;Time-varying delays

基金项目:SC14TJ06

中文摘要

在本文中,我们对一类带随机和时变时滞效应的模糊Cohen-Grossberg神经网络的均方指数输入对状态稳定性进行了研究。通过利用Razumikhin技巧和构造新的时滞微分不等式,我们得到了神经网络系统均方指数输入对状态稳定性的充分性判定条件。并给出了一个例子用来说明我们得到的结果的有效性。

英文摘要

In this paper, a class of stochastic fuzzy Cohen-Grossberg neural networks with time-varying delays is considered. By utilizing Razumikhin technique and constructing new delay differential inequalities, some new suffcient con ditions ensuring the mean-square exponentially input-to-state stability prop- erty of delayed network systems are obtained. A numerical example is given to illustrate the effciency of the derived results.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065