期刊导航

论文摘要

Navier-Stokes方程最优控制问题的一种新型投影稳定化方法

A new projection method for the optimal control of Navier-Stokes equations

作者:覃燕梅(内江师范学院数学与信息科学学院/四川省高等学校数值仿真重点实验室)

Author:QIN Yan-Mei(College of Mathematics and Information Science/Key Laboratory of Numerical Simulation in the Sichuan Province, Neijiang Noramal University)

收稿日期:2016-04-21          年卷(期)页码:2016,53(5):973-979

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:最优控制; 非定常Navier-Stokes方程; 高雷诺数; $L^2$投影

Key words:optimal control; unsteady Navier-Stokes equations; high Reynolds number; $L^2$ projection

基金项目:其它

中文摘要

研究了二维高雷诺数下, 非定常Navier-Stokes方程最优控制问题一种新型投影稳定化方法. 通过$L^2$投影稳定化技巧,绕开了inf-sup条件对等阶元的束缚,克服了高诺数较大时, 对流占优引起的振荡.该方法的优点在于: 所有计算只需要在同一套网格上执行,不需要嵌套网格或者将速度和压力的梯度投影到粗网格上计算.给出了详细的稳定性分析和与雷诺数一致的误差估计.

英文摘要

In this paper, a new $L^2$ projection method is proposed for the optimal control of Navier-Stokes equations. The continuous equal-order conforming elements is employed. The method not only overcomes the spurious oscillations due to dominant convection, but also is stable for the equal-order combination of discrete velocity and pressure spaces by adding two local or global $L^2$ projection terms. Specially, a main advantage of the proposed method is that all the computations are performed at the same element level, without the need of nested meshes or the projection of the gradient of velocity/pressure onto a coarse level. The stability of the new method is given. For the state, adjoint state and control variables, the a priori error estimates are obtained uniformly with Reynolds number.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065