Extracellular signal-regulated kinase(ERK) is an important signaling transduction pathway involved in tooth development. The pathway widely regulates dentification and tooth morphogenesis in each developmental stage. Fibroblast growth factor-10 promotes the initiation and development of tooth germ by activating the ERK signaling transduction pathway in dental epithelium. The pathway also regulates the differentiation of mesenchymal stem cells into odontoblasts and the initiation and differentiation of periodontium. Mineral trioxide aggregate can induce odontoblast differentiation by phosphorylating and activating ERK. The pathway is critical in inducing the differentiation of dental pulp stem cell(DPSC) into odontoblasts; hence, activating the ERK signaling pathway in DPSC may be an effective way to regenerate odontoblasts. Hydrostatic pressures during dentification promote mesenchymal osteodifferentiation. By contrast, mechanical stretch inhibits osteogenic differentiation by increasing pERK-mediated cell proliferation. The ERK signaling pathway facilitates the migration of DPSC and the regeneration of dental pulp tissue. This review enumerates the functions of the ERK pathway in dentification and discusses how ERK influences tooth regeneration.