论文速览

论文速览

当前位置: 首页 > 论文速览 > 正文

奇异四阶三点特征值问题正解的存在性

Positive solutions of singular fourth-order three-point eigenvalue problem

作者:达举霞(西北师范大学数学与统计学院);韩晓玲(西北师范大学数学与统计学院)

Author:DA Ju-Xia(College of Mathematics and Statistics, Northwest Normal University);HAN Xiao-Ling(College of Mathematics and Statistics, Northwest Normal University)

收稿日期:2016-09-26          年卷(期)页码:2017,54(3):441-446

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:三点奇异特征值问题;四阶微分方程;正解;不动点定理

Key words:Three-point singular eigenvalue problem; Fourth-order differential equation; Positive solutions; Fixed point theorem

基金项目:

中文摘要

本文主要研究了非线性奇异四阶三点特征值问题 u^{(4)}(t)=\lambda a(t)f(t,u(t)),t\in [0,1], u(0)=u'(\eta)=u''(1)=u'''(0)=0 正解的存在性. 其中\lambda是正的参数,\eta\in[\frac{1}{2},1)为常数.通过使用锥上的不动点定理获得了此问题的一个和多个正解的存在性.本文主要强调在非线性项f和a的假设条件下,我们给出了存在正解的\lambda的取值范围.尤其是,非线性项里的函数a(t)是奇异的.

英文摘要

In this paper we investigate the problem of existence of positive solutions for the nonlinear singular fourth-order three-point eigenvalue problem u^{(4)}(t)=\lambda a(t)f(t,u(t)),t\in [0,1], u(0)=u'(\eta)=u''(1)=u'''(0)=0, where \lambda is a positive parameter and \eta\in[\frac{1}{2},1) is a constant. By using the fixed point theorem of cone expansion-compression type duo to Krasnosel'skii, we establish various results on the existence of single and multiple positive solutions to the eigenvalue problem. Under various assumptions on functions f and a, we give explicitly the intervals for parameter \lambda in which the existence of positive solutions is guaranteed. Especially, we allow the function a(t) of nonlinear term to have suittable singularities.

下一条:Bregman弱相对非扩张映象与均衡问题的强收敛定理

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065