期刊导航

论文摘要

GPS/INS动态卡尔曼滤波优化算法

Optimized Algorithm of Dynamic Kalman Filtering for GPS/INS

作者:王忠(四川大学 电气信息学院,四川 成都 610065);游志胜(四川大学 计算机学院,四川 成都 610065);杜传利(四川大学 电气信息学院,四川 成都 610065)

Author:(School of Electronics and Info., Eng., Sichuna Univ., Chengdu 610065, China);(School of Computer,Sichuan Univ., Chengdu 610065,China);(School of Electronics and Info., Eng., Sichuna Univ., Chengdu 610065, China)

收稿日期:2005-08-31          年卷(期)页码:2006,38(4):141-144

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:全球定位系统;惯导系统;卡尔曼滤波

Key words:GPS;INS;Kalman filtering

基金项目:国家自然科学基础资助项目(49901013);中国博士后基金资助项目

中文摘要

GPS/INS组合导航系统动态定位数据的随机误差消除的重要方法是卡尔曼滤波,但运用扩展卡尔曼滤波器进行动态定位滤波时,需要对系统模型和观测模型以及误差模型进行准确建模,特别是载体状态机动时滤波器跟踪能力不强。提出一种GPS/INS组合导航动态卡尔曼滤波的优化算法,引入遗忘因子限制卡尔曼滤波器的记忆长度,充分利用现时的测量数据,改善滤波器的动态性能,并进行计算机仿真实验。仿真结果表明,遗忘因子增加,滤波器的跟踪能力增强,使滤波器达最佳性能。该优化算法比普通的扩展卡尔曼滤波算法的动态跟踪性能好,从而可显著提高导航系统定位精度。

英文摘要

Kalman filter is an important method for eliminating stochastic errors of dynamic positioning in GPS/INS integrated navigation system. An optimized algorithm of Dynamic Kalman Filtering for GPS/INS was presented in the paper. Forgetting factor was used to limit remember length of filter. Measurement data was used fully. Computer simulation was done. Computer simulation results showed that as Forgetting factor is increased, the tracking performance of filter is enhanced,and the algorithm is better than general algorithm for extend kalman filtering in dynamic tracking. Positioning precision of GPS/INS can be improved by the algorithm.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065