期刊导航

论文摘要

基于卡尔曼滤波技术的人工神经网络权重估算及应用

Estimation and Application of Artificial Neural Networks’ Weight Based on Kalman Filter Technique

作者:覃光华(四川大学 水利水电学院,四川 成都 610065);王顺久(四川大学 水利水电学院,四川 成都 610065);缪韧(四川大学 水利水电学院,四川 成都 610065)

Author:(Dept. of Hydraulic Eng., Sichuan Univ.,Chengdu 610065, China);(Dept. of Hydraulic Eng., Sichuan Univ.,Chengdu 610065, China);(Dept. of Hydraulic Eng., Sichuan Univ.,Chengdu 610065, China)

收稿日期:2007-06-05          年卷(期)页码:2008,40(4):25-28

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:神经网络;卡尔曼滤波;权重

Key words:neural networks;Kalman filter;weight

基金项目:中国气象局成都高原气象研究所基本科研专项资助项目“青藏高原气候变化对径流水资源的影响及其模拟研究”(BROP 200701)

中文摘要

为改进神经网络模型算法,将神经网络技术与卡尔曼滤波技术进行耦合。在样本训练过程中,将卡尔曼滤波递推算法用于神经网络权重的训练,然后用训练得到的权重进行检验。文中以岷江上游段紫坪埔水文站的流量预报为实例,并与单一的神经网络模型以及卡尔曼滤波模型进行了比较。应用结果表明,卡尔曼技术用于神经网络权重估算,可改善水文预报精度。

英文摘要

The paper combines artificial neural networks (ANNs) with Kalman filter real time adjustment technique in order to improve traditional ANNs model. The weights are trained by Kalman filter real time adjustment technique in the process of sample training, and then the weights are used for check.One case is flow forecasting for upper reach of Minjing River at Zipingpu station by using the method proposed in the paper, and the results are compared with single ANNs model and single Kalman filter model. The results show if Kalman filter technique is used in estimating networks weights,hydrologic forecast accuracy may be improved.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065