期刊导航

论文摘要

重力坝弹性参数反演的灵敏度分析及一种新的反演算法

Sensitivity Analysis and a New Inverse Algorithm of Elastic Parameters for Gravity Dam

作者:宋志宇(大连理工大学 土木水利学院,辽宁 大连 116023);李俊杰(大连理工大学 土木水利学院,辽宁 大连 116023)

Author:(School of Civil and Hydraulic Eng.,Dalian Univ. of Technol., Dalian 116023,China);(School of Civil and Hydraulic Eng.,Dalian Univ. of Technol., Dalian 116023,China)

收稿日期:2006-01-11          年卷(期)页码:2006,38(4):34-38

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:参数反演;灵敏度分析;人工鱼群算法;数值稳定性;大坝

Key words:parameter inversion; sensitivity analysis; artificial fish swarm algorithm; numerical stability; dam

基金项目:

中文摘要

依据结构灵敏度分析理论,采用基于有限单元法的解析灵敏度分析方法,对影响重力坝材料参数反演质量的位移观测点位置进行了研究,得到了坝顶位移最适合于反演大坝弹性模量的结论。同时引入一种新的群集智能优化方法—人工鱼群算法(AFSA),根据大坝坝顶的增量位移进行混凝土大坝和坝基岩石材料参数的反演。算例分析表明:AFSA能够稳定快速地收敛到所求参数的全局最优值;同时加入不同水平的噪音对该算法的数值稳定性进行了研究,结果表明算法稳定性良好。

英文摘要

The research of finding optimal observation place for inversing concrete gravity dam parameters was studied firstly through analytical sensitivity analysis theory, the conclusion indicated that the displacement of dam crest is the most suitable data for inversing dam parameters. Then a novel stochastic search optimization algorithm—Artificial Fish Swarm Algorithm (AFSA ) was presented, according to the incremental displacement of dam crest, it was applied to inverse the parameters of gravity dam and bedrock,at the meantime, the numerical stability of AFSA was also analyzed. Results of computational example show that the proposed inverse method can rapidly converge to the global optimum solution, and has the characteristics of global convergence and the strong ability of noise resistance. So it can be concluded that the inverse method of dam parameters based on AFSA is workable and reliable.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065