期刊导航

论文摘要

基于支持向量机的癌细胞经典分泌蛋白与非经典分泌蛋白识别研究

A study on recognition of classically and non-classically secreted proteins from cancer cells based on support vector machine

作者:余乐正(贵州师范学院化学与材料学院);柳凤娟(贵州师范学院化学与材料学院);李东海(贵州师范学院化学与材料学院);郭延芝(四川大学化学学院);李益洲(四川大学化学学院)

Author:YU Le-Zheng(School of Chemistry and Materials Science, Guizhou Education University);LIU Feng-Juan(School of Chemistry and Materials Science, Guizhou Education University);LI Dong-Hai(School of Chemistry and Materials Science, Guizhou Education University);GUO Yan-Zhi(College of Chemistry, Sichuan University);LI Yi-Zhou(College of Chemistry, Sichuan University)

收稿日期:2018-10-07          年卷(期)页码:2020,57(1):152-156

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:支持向量机;癌症;非经典分泌蛋白;位置特异性得分矩阵;信号肽

Key words:Support vector machine; Cancer; Non-classically secreted protein; Position specific scoring matrix; Signal peptide

基金项目:省自然科学基金

中文摘要

基于支持向量机算法,本文提出了一种能快速准确区分癌细胞经典分泌蛋白与非经典分泌蛋白的方法.通过严格的特征筛选,氨基酸组成、位置特异性得分矩阵和信号肽组成了最优特征集. 测试集检测结果表明,本方法对癌细胞经典分泌蛋白与非经典分泌蛋白具有较强的区分能力,可为寻找到不同种类癌症间通用的生物标志物提供理论参考.

英文摘要

Based on support vector machine (SVM) algorithm, a fast and accurate method is proposed to distinguish the classically and non-classically secreted proteins from cancer cells. By a strict feature selection, the optimal feature set is obtained which consists of amino acid composition (AAC), position specificity score matrix (PSSM) and signal peptide (SP). The test results show that our method has strong ability to distinguish the non-classically secreted proteins (NCSPs) from the classically secreted proteins (CSPs) of cancer cells, which may provide theoretical reference for finding common biomarkers among different kinds of cancers.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065