期刊导航

论文摘要

基于增强问题重要性表示的答案选择算法研究

Question Based Importance Weighting Network for Answer Selection

作者:谢正文(四川大学计算机学院);熊熙(成都信息工程大学网络空间安全学院);琚生根(四川大学计算机学院)

Author:XIE Zheng-Wen(College of Computer Science,Sichuan University);XIONG Xi(School of Cybersecurity, Chengdu University of Information Technology);JU Sheng-Gen(College of Computer Science,Sichuan University)

收稿日期:2019-06-17          年卷(期)页码:2020,57(1):66-72

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:答案选择;问题表示;自注意力机制;词级矩阵

Key words:Answer selection; Question representation; Self attention; Word matrix

基金项目:2018年四川省新一代人工智能重大专项(2018GZDZX0039)

中文摘要

针对经典的文本匹配模型在问答系统中应用的缺陷和不足,提出了一种基于增强问题重要性表示网络BIWN的答案选择算法.目前,现有的答案选择模型普遍将问题句子和答案句子直接进行匹配,忽略了问题句子和答案句子中的噪声词对匹配的影响.针对这个问题,首先,利用自注意力机制修改问题句子中各个词的权重,生成“干净”的问题句子向量;然后,利用词级交互矩阵捕捉问题句子和答案句子之间的细粒度语义信息,从而有效地弱化了噪声词对正确答案的影响;最后,利用多窗口CNN提取特征信息得到预测结果.基准数据集上的对比实验表明,BIWN模型在答案选择任务的性能优于主流的答案选择算法,MAP值和MRR值提升了约0.7%~6.1%.

英文摘要

According to the defects of the classic text matching model in the question and answer system, a question based importance weighting network for answer selection is proposed. At present, the existing answer selection model generally matches the question sentence and the answer sentence directly, ignoring the influence of noise words in the question sentence and the answer sentence on the match. To solve this problem, the self attention mechanism is firstly used to modify the weight of each word in the sentence to generate a "clean" question sentence vector. The word level interaction matrix is then used to capture the fine grained semantic information between the question sentence and the answer sentence. It weakens the influence of noise words on the correct answer. Finally, the multi window CNN is used to extract the feature information to obtain the prediction result. The comparison experiments on benchmark datasets show that the performance of the BIWN model in the answer selection task is better than the mainstream answer selection algorithm, and the MAP value and MRR value are improved by about 0.7%~6.1%.Finally, the multi-window CNN is used to extract the feature information to obtain the prediction result. The comparison experiments on benchmark datasets show that the performance of the BIWN model in the answer selection task is better than the mainstream answer selection algorithm, and the MAP value and MRR value are improved by about 0.7%-6.1%.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065