期刊导航

论文摘要

具平坦欧氏边界的局部凸浸入超曲面

Locally convex immersed surfaces with flat Euclidean boundary

作者:王宝富(四川大学数学学院)

Author:WANG Bao-Fu(School of Mathematics, Sichuan University)

收稿日期:2019-01-31          年卷(期)页码:2020,57(1):7-10

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:浸入超曲面; 欧氏边界点; 局部强凸

Key words:Immersed hypersurface; Euclidean boundary point; Locally strongly convex

基金项目:国家自然科学基金(11571242)

中文摘要

在仿射微分几何中,局部强(一致)凸的浸入超曲面的几何与拓扑性质非常复杂,这导致其欧氏边界的性质同样复杂。本文构造出一类新的局部强凸的浸入超曲面,其欧氏边界是平坦的(即边界落在一个超平面内),但曲面本身却不是整体凸的,这与目前现存的结论完全不同。

英文摘要

In affine differential geometry, the geometric and topological behavior of locally strongly (uniformly) convex immersed surfaces(hypersufaces) are very complicated, so are their Euclidean boundaries. In this paper we construct a new locally strongly convex ( but not globally convex) immersed surface(hypersurfaces) with flat Euclidean boundary in $\mathbb{R}^{n+1},(n=2,3)$ , respectively, which are different from an existing conclusion.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065