期刊导航

论文摘要

任意阶算子的有理逼近——奇异标度方程

Rational approximation of arbitrary order operators ———Strange scaling equations

作者:郭钊汝(四川大学电子信息学院);何秋燕(四川大学 计算机学院);袁晓(四川大学电子信息学院);蒲亦非(四川大学计算机学院)

Author:GUO ZhaoRu(School of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China);HE QiuYan(School of Computer Science, Sichuan University,);YUAN Xiao(School of Electronics and Information, Sichuan University);PU YiFei(School of Computer Science, Sichuan University,)

收稿日期:2019-07-26          年卷(期)页码:2020,57(3):495-504

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:分数阶微积分;奇异标度方程;连分式展开法;标度拓展;零极点分布;运算振荡现象

Key words:Fractional calculus;Strange scaling equations;The continuous expansion method;Scale expansion; The zero-pole distribution;Operational oscillation

基金项目:国家自然科学基金(61571312)

中文摘要

用连分式展开法和标度拓展理论得到两类新型非正则标度方程——奇异标度方程.探究奇异标度方程的有理函数序列在运算有效性、运算性能、运算振荡周期方面与以往分抗迭代方程的不同之处和优势之处.由复平面内的零极点分布证明了奇异标度方程是物理可实现的,并且总结了逼近性能,此方程为分抗逼近电路的实现与设计提出了一种新模型和新思路.由零极点与阶频特征的局域化特征,找出了任何物理可实现的非正则标度方程运算振荡现象产生的原因.

英文摘要

Two new types of irregular scaling equations—strange scaling equations are obtained by the continuous expansion method and scale expansion theory. This paper explores the differences and advantages of the rational function sequences of strange scaling equations in terms of computational effectiveness, computational performance, and operational oscillation period. It is proved by the zero pole distribution in the complex plane that the strange scale equations are physically achievable, and the approximation performance is summarized. These equations propose a new model and a new idea for the realization and design of the fractance approximation circuits. From the localized features of the zero pole and the frequency characteristics, the reason for the operational oscillation of any physically achievable irregular scaling equation is found.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065