期刊导航

论文摘要

基于卷积神经网络和自注意力机制的文本分类模型

Text classification model based on convolutional neural network and self attention mechanism

作者:汪嘉伟(四川大学计算机学院);杨煦晨(四川大学计算机学院);琚生根(四川大学计算机学院);袁宵(四川大学计算机学院);谢正文(四川大学计算机学院)

Author:WANG Jia-Wei(College of Computer Science,Sichuan University);YANG Xu-Chen(College of Computer Science,Sichuan University);JU Sheng-Gen(College of Computer Science,Sichuan University);YUAN Xiao(College of Computer Science,Sichuan University);XIE Zheng-Wen(College of Computer Science,Sichuan University)

收稿日期:2019-11-04          年卷(期)页码:2020,57(3):469-475

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:文本分类;卷积神经网络;自注意力机制;长距离依赖

Key words:Text classification;convolutional neural network;self-attention mechanism; long-range dependencies

基金项目:2018年四川省新一代人工智能重大专项科技项目(2018GZDZX0039)

中文摘要

摘 要: 单词级别的浅层卷积神经网络(CNN)模型在文本分类任务上取得了良好的表现.然而,浅层CNN模型由于无法捕捉长距离依赖关系,影响了模型的在文本分类任务上的效果.简单地加深模型层数并不能提升模型的效果.本文提出一种新的单词级别的文本分类模型Word-CNN-Att,该模型使用CNN捕捉局部特征和位置信息,利用自注意力机制捕捉长距离依赖.在AGNews、DBPedia、Yelp Review Polarity、Yelp Review Full、Yahoo! Answers 5个公开的数据集上,Word-CNN-Att比单词级别的浅层CNN模型的准确率分别提高了0.9%、0.2%、0.5%、2.1%、2.0%.

英文摘要

The word level shallow convolutional neural network (CNN) model has achieved good performance in text classification tasks. However, shallow CNN models cant capture long range dependencies, which affects the model's performance in text classification tasks, but simply deepening the number of layers of the model does not improve the models performance. This paper proposes a new word level text classification model Word CNN Att, which uses CNN to capture local features and position information, and captures long range dependencies with self attention mechanism. The accuracy of Word CNN Att, on the five public datasets of AGNews, DBPedia, Yelp Review Polarity, Yelp Review Full, Yahoo! Answers, is 0.9%, 0.2%, 0.5%, 2.1%, and 2.0% higher than the word level shallow CNN model respectively.

下一条:基于CUSUM算法的LDoS攻击检测方法

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065