期刊导航

论文摘要

一维非稳态半导体漂移扩散模型的弱Galerkin有限元法

A weak Galerkin finite element method for 1D drift-diffusion model of time-dependent semiconductor devices

作者:朱紫陌(四川大学数学学院);李鸿亮(中国工程物理研究院电子工程研究所);张世全(四川大学数学学院)

Author:Zhu Zi-Mo(School of Mathematics, Sichuan University);Li Hong-Liang(Institute of Electronic Engineering, China Academy of Engineering Physics);Zhang Shi-Quan(School of Mathematics, Sichuan University)

收稿日期:2019-04-09          年卷(期)页码:2020,57(4):625-634

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:非稳态漂移扩散模型; 弱Galerkin有限元法; 半离散; 误差估计

Key words:Time-dependent drift-diffusion model; Weak Galerkin finite element method; Semi-discrete; Error estimate

基金项目:国家自然科学基金(11401407)

中文摘要

本文提出了一种求解一维非稳态半导体漂移扩散模型的弱Galerkin有限元法.该模型是一个描述静电势分布的泊松方程和一个刻画电子守恒性的非线性对流扩散方程的耦合系统.在弱Galerkin格式中,本文在单元内部用分片多项式来逼近静电势和电子浓度,以及静电势和电子浓度的弱导数,进而得到了半离散问题的最优误差估计.数值试验验证了理论结果.

英文摘要

This paper proposes a weak Galerkin (WG) finite element method for solving time dependent drift-diffusion problems in one dimension. This drift-diffusion model involves a Poisson equation for the electrostatic potential coupled to a nonlinear convection diffusion equation for the electron concentration. The weak Galerkin method adopts piecewise polynomials for the electrostatic potential and electron concentration approximations in the interior of elements, and piecewise polynomials for the weak derivative of electrostatic potential and electron concentration. Optimal error estimates are derived for the semi-discrete problem and numerical experiments are provided to verify our theoretical results.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065