期刊导航

论文摘要

关于单位分数的 Lazar 问题

On a problem of Lazar on unit fractions

作者:卢健(四川大学数学学院);李懋(西南大学数学与统计学院);邱敏(西华大学理学院)

Author:lujian(School of Mathematics, Sichuan University);limao(School of Mathematics and Statistics, Southwest University);qiumin(School of Science, Xihua University)

收稿日期:2020-03-26          年卷(期)页码:2020,57(6):1067-1072

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:Diophantine 方程; 连分数; 渐近分数; Erdos-Straus 猜想

Key words:Diophantine equation; Continued fraction; Convergents; Erdos-Straus conjecture

基金项目:国家自然科学基金

中文摘要

设 $n$ 为任意正整数. 著名 Erd\H{o}s-Straus 猜想是指当 $n\ge 2$ 时, Diophantine 方程 $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 总有正整数解 $(x,y,z)$. 虽然有许多作者研究这个猜想, 但是至今它还未被解决. 设 $p\ge 5$ 为任意素数. 最近, Lazar 证明 Diophantine 方程 $ \frac{4}{p}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 在区域 $xy

英文摘要

Let $n$ be a positive integer. The well-known Erd\H{o}s-Straus conjecture asserts that the positive integral solution of the Diophantine equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ always exists when $n\ge 2$. This problem remains unresolved and produced numerous related problems. Recently, Lazar investigated some properties of the solutions to above Diophantine equation in the special case that $n$ is a prime number. Let $p\ge 5$ be a prime number. Lazar showed that there are no triple of positive integers $(x,y,z)$ which is solution of the Diophantine equation $ \frac{4}{p}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ in the range $xy

上一条:算术平均半亚式期权定价的快速算法

下一条:一个三维系统的音叉分岔

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065