期刊导航

论文摘要

一种考虑用户兴趣转移特征的协同预测模型

A collaborative prediction model for user interest shift feature

作者:刘汉清(四川大学计算机学院);朱敏(四川大学计算机学院);苏亚博(四川大学计算机学院);唐彬彬(四川大学计算机学院)

Author:LIU Han-Qing(College of Computer Science, Sichuan University);ZHU Min(College of Computer Science, Sichuan University);SU Ya-Bo(College of Computer Science, Sichuan University);TANG Bin-Bin(College of Computer Science, Sichuan University)

收稿日期:2015-11-03          年卷(期)页码:2016,53(3):548-554

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:预测模型; 兴趣转移; 演变网络; 协同过滤

Key words:prediction model; interest transfer; evolving network; collaborative filtering

基金项目:四川省科技支撑计划项目

中文摘要

目前,大多数预测模型使用用户属性或社交关系信息来优化预测结果,然而真实系统中用户的属性或社交关系信息往往很难获得,或者取得的是虚假信息,从而导致用户行为表达不准确或模型不具有普适性。另外,几乎所有使用用户特征的模型仅考虑用户兴趣本身的度量,而忽视兴趣的变化这一重要特征。为此,本文提出一种考虑用户兴趣转移特征的协同预测模型。该模型根据用户连续行为序列构建用户行为演变网络和用户兴趣转移特征,利用用户兴趣转移特征计算用户相似性,进而搜索最近邻集合,利用用户行为演变网络筛选候选集,最后设计最频繁项提取算法来产生预测结果,从而构建用户行为的预测模型。在真实的新闻浏览日志、交互式网络电视视频访问日志和微软服务器日志上的实验表明该预测模型是有效的。

英文摘要

Recently, most of prediction models employ basic attributes of users or social relationships as the original features to optimize prediction results. Nevertheless, in the real systems, it’s highly difficult to acquire attributes and social information of users, which always lack of sufficient accuracy, so that user behavior couldn’t be expressed accurately as well as prediction models couldn’t be applied widely. Additionally, almost the whole models employing user features focus on measurement of interests of user itself, while ignoring the feature of the change of user interests. Based on the above considerations, we propose a collaborative prediction model based on transfer features of user interests. The model constructs network evolution of user behavior and transfer features of user interests according to the sequences of consistent user behavior, of which the former is used to compute similarity of users to retrieve nearest neighbor sets while the latter is applied to filter candidate sets. With the application of a news browsing log, as well as an internet protocol television access log and a microsoft server log, experiments indicate the effectiveness and practicability of our prediction model.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065