期刊导航

论文摘要

k-半层空间的集值映射扩张

Expansions of set-valued mappings on k-semistratifiable spaces

作者:金迎迎(五邑大学数学与计算科学学院);赵国松(四川大学数学学院);谢利红(五邑大学数学与计算科学学院)

Author:JIN Ying-Ying(School of Mathematics and Computational Science, Wuyi University);ZHAO Guo-Song(School of Mathematics, Sichuan University);XIE Li-Hong(School of Mathematics and Computational Science, Wuyi University)

收稿日期:2015-05-09          年卷(期)页码:2016,53(3):497-502

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:集值映射扩张;k-半层空间;k-MCM

Key words:Expansions of set-valued mappings;k-semistratifiable;k-MCM

基金项目:高等学校博士学科点专项科研基金,高校基金,其它

中文摘要

为了刻画k-半层空间引进k-半连续集值映射的定义,通过集值映射扩张刻画了k-半层空间和k-MCM空间. 住要证明了:对于空间X下列论断等价:(1)X是k-半层空间;(2)对每个度量空间Y,存在保序算子$\Phi$使得对每个集值映射$\varphi: X \rightarrow \mathcal {F}(Y)$都对应下半连续和k-上半连续集值映射$\Phi(\varphi): X \rightarrow \mathcal {F}(Y)$使得 $\Phi(\varphi)(x)$ 在每个点$x\in U_\varphi$有界并且$\varphi\subseteq \Phi(\varphi)$.

英文摘要

In this paper, we give some characterizations of $k$-semistratifiable and $k$-MCM by expansions of set-valued mappings. It is shown that for a space $X$, the following statements are equivalent: (1) $X$ is $k$-semistratifiable; (2) for every metric space $Y$, there exists an order-preserving operator $\Phi$ that assigns each set-valued mapping $\varphi: X \rightarrow \mathcal {F}(Y)$ ($\mathcal {F}(Y)$ is the set of all nonempty closed set of $Y$), a l.s.c. and $k$-u.s.c. set-valued mapping $\Phi(\varphi): X \rightarrow \mathcal {F}(Y)$ such that $\Phi(\varphi)(x)$ is bounded for each $x\in U_\varphi$, where $U_\varphi=\{x\in X: \varphi \text{~is locally bounded at ~}x\}$, and that $\varphi\subseteq \Phi(\varphi)$.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065