期刊导航

论文摘要

一类具有奇性的时滞平均曲率方程周期解的存在性问题

Existence of positive periodic solutions for a delay prescribed mean curvature equation with a singularity

作者:郑淑媛(安徽师范大学数学计算机科学学院);孔凡超(安徽师范大学数学计算机科学学院);鲁世平(南京信息工程大学数理学院)

Author:ZHENG Shu-Yuan(Department of Mathematics, Anhui Normal University);KONG Fan-Chao(Department of Mathematics, Anhui Normal University);LU Shi-ing(College of Mathematics and Statistics, NUIST)

收稿日期:2015-06-29          年卷(期)页码:2016,53(3):490-496

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:周期解;重合度拓展定理;Li\'{e}nard型平均曲率方程; 奇性

Key words:Positive periodic solutions; Continuation theorem; Prescribed mean curvature equation; Singularity

基金项目:国家自然科学基金

中文摘要

本文研究了如下具有奇性的Li\'{e}nard型时滞平均曲率方程$$(\frac{u'(t)}{\sqrt{1+(u'(t))^2}})'+f(u(t))u'(t)+g( u(t-\gamma))=e(t)$$的周期解存在性问题. 运用Mawhin重合度扩展定理, 获得了该方程至少存在一个$T$-周期正解的新结果, 最后给出一个例子来验证文章主要结论的有效性. 本文的研究丰富了时滞平均曲率方程的内容.

英文摘要

In this paper, we study the existence of periodic solutions to the following prescribed mean curvature Li\'{e}nard equation with a singularity and a deviating argument $$(\frac{u'(t)}{\sqrt{1+(u'(t))^2}})'+f(u(t))u'(t)+g( u(t-\gamma))=e(t)$$ And by applying Mawhin's continuation theorem, a new result on the existence of positive $T-$periodic solution for this equation is obtained. An example is given to illustrate the effectiveness of our results. Our research enriches the contents of prescribed mean curvature equations.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065