期刊导航

论文摘要

支持向量机的凸优化求解

Convex Optimization of Support Vector Machines

作者:周正松(四川大学锦城学院电子信息工程系);李瑶(四川大学锦城学院电子信息工程系);陶德元(四川大学锦城学院电子信息工程系; 四川大学电子信息学院)

Author:ZHOU Zheng-Song(Electronic and Information Engineering Institute, Jincheng College of Sichuan University);LI Yao(Electronic and Information Engineering Institute, Jincheng College of Sichuan University);TAO De-Yuan(Electronic and Information Engineering Institute, Jincheng College of Sichuan University; College of Electronical and Information Engineering, Sichuan University)

收稿日期:2015-06-29          年卷(期)页码:2016,53(4):781-787

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:支持向量机 模式识别 凸优化 线性分类

Key words:Support Vector Machine, Pattern Recognition, Convex Optimization, Linear Classification

基金项目:

中文摘要

支持向量机(SVM)是一种基于统计学习理论的机器学习方法,由于其优越的学习性能,已经成为当前模式识别、数据挖掘、大数据处理等机器学习领域的研究热点。查阅相关同类文章,发现其中对SVM理论中公式,如距离函数 、拉格朗日函数 、二次凸优化函数 等的来龙去脉缺少细致的阐述。本文对SVM理论中典型的线性最优二分类问题的求解进行了完整的推导,并给出了对岩屑岩性分类识别的结果,也为今后的非线性多类模式分解作出铺垫。

英文摘要

Support Vector Machine (SVM) is a machine learning method based on statistical learning theory. Because of its superior learning performance. It has become the hot topic of pattern recognition, data mining, machine learning and other large data processing areas. Access to relevant similar articles. Found that the theory of SVM formula,such as the distance function , Lagrange function , quadratic convex optimization function lack detailed exposition. This paper tries to make readers to the typical linear optimal binary classification problem have a complete idea. The results of the classification and identification of rock cuttings are presented.It also wants to make a foundation of nonlinear multi-class pattern decomposition.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065