期刊导航

论文摘要

分位点门限自回归时间序列模型的贝叶斯方法

QUANTILE Threshold Autoregressive time series models

作者:赵超(四川大学数学学院);李东方(四川大学数学学院);唐亚勇(四川大学数学学院)

Author:ZHAO Chao(College of Mathematics, Sichuan University);LI Dong-Fang(College of Mathematics, Sichuan University);TANG Ya-Yong(College of Mathematics, Sichuan University)

收稿日期:2014-03-11          年卷(期)页码:2016,53(4):748-752

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:贝叶斯方法;MCMC;门限分位点自回归模型;上证综合指数

Key words:Bayesian methods; MCMC; quantlile TAR model; Shanghai composite index

基金项目:

中文摘要

本文运用贝叶斯方法研究了门限分位点自回归时间序列模型的估计和预测. 将分位点回归的最优化问题转化为极大似然估计的问题,从而可以利用Metropolis-Hastings算法对模型中的参数进行Bayesian估计. 同时我们将模型应用于上证综合指数的增长率的数据, 得到了这一增长率的分位点估计. 这一方法的优越之处在于它不需要对数据的分布作预先的假定.

英文摘要

In this paper, we study the estimation and forecasting of the quantile threshold autoregressive time series model. By transforming the optimization problem in the quantile regression into a maximum likelihood estimation, we can impose the Metropolis-Hastings method for the Bayesian estimation of the parameters in the model. At the same time, the methodology is applied to the growth of Shanghai composite index data, quantile estimations of the growth data are obtained. The merit of this method is that we need not to propose any distributional assumptions of the data.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065