期刊导航

论文摘要

自固化载硒纳米微球/磷酸钙复合骨修复材料的制备及性能

Construction and properties of self-solidified combined bone repair system with loaded selenium nanospheres/calcium phosphate

作者:张驰(湖北民族大学);吴海燕(湖北民族大学);冉青(湖北民族大学);商龙臣(湖北民族大学);李光大(河南科技大学);刘信平(湖北民族大学)

Author:ZHANG Chi(Hubei Minzu University);WU Hai-yan(Hubei Minzu University);RAN Qing(Hubei Minzu University);SHANG Long-chen(Hubei Minzu University);LI Guang-da(Henan University of Science and Technology);LIU Xin-Ping(Hubei Minzu University)

收稿日期:2018-10-07          年卷(期)页码:2019,56(1):125-134

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:磷酸钙骨水泥;壳聚糖微球;硒;建构; 性能

Key words:Calcium phosphate cement; Chitosan microsphere; Selenium; Construct; Property

基金项目:国家自然科学基金

中文摘要

研究制备具有促修复、抗肿瘤的可注射缓释硒纳米微球复合磷酸钙骨水泥材料. 采用乳化交联法制备Na2SeO3/CS 缓释硒纳米微球, 将微球与磷酸钙骨水泥(CPC)复合, 制备Na2SeO3/CS/ CPC骨修复系统, 对该系统的固化时间、力学强度、缓释硒及降解性能、形貌、晶相构成进行测定和表征分析, 并对其体外细胞活性进行研究. 结果表明: 相对于纯的CPC, 当掺入Na2SeO3/CS 纳米微球的量为 4 % 时, 复合CPC的注射性良好, 固化时间5.75~11.5 min, 固化强度提高, 微观结构显示CPC均匀地包裹在壳聚糖微球表面并形成了针片状 HA 晶体, 微球的添加对复合CPC材料的晶相组分无显著影响, 缓释硒效应良好, 有效缓释达22 d, 降解性优于纯CPC, 形成了蜂窝状完善的网状三维立体多孔结构, 利于组织细胞和血管及神经的黏附长入. 体外细胞实验表明, 复合CPC对人乳腺癌细胞MCF-7及MG-63人骨肉瘤细胞增生的抑制作用显著, 且对两株细胞增生的抑制性差异不显著. 本研究为非承骨微创、缺陷修复及骨肿瘤的术后恢复、防止复发和转移的预防和治疗提供一种新思路, 同时为拓展功能元素硒的合理应用奠定实验基础.

英文摘要

The study was to prepare composite calcium phosphate cement with improved repair and anti-tumor injectable sustained-release selenium nanoparticle. Na2SeO3/CS sustained release selenium nanospheres were prepared by emulsification and crosslinking method. The microspheres were combined with calcium phosphate cement (CPC) to prepare the Na2SeO3/CS/ CPC bone repair system. The curing time, mechanical strength, sustained release selenium and degradation properties, morphology and phase composition of the system were measured and characterized, and the activity of the cells in vitro was studied. The result showed that compared with pure CPC, when the amount of Na2SeO3/CS nano microspheres was 4 %,the injection of composite CPC was good, the curing time was 5.75 -11.5 minutes and the curing strength was improved. The microstructure showed that CPC was evenly wrapped on the surface of chitosan microspheres and formed a needle like HA crystal. The addition of the microspheres to the crystalline phase of the composite CPC material had no significant effect in the components. The sustained release selenium effect was good, the effective release was 22 d, and the degradation was better than the pure CPC. The honeycomb like three-dimensional porous structure of the network was formed, which was beneficial to the adhesion of tissue cells and blood vessels and nerves. In vitro cell test showed that the inhibitory effect of compound CPC on the proliferations of MCF-7 and MG-63 human osteosarcoma cells in human breast cancer cells was significant, and the inhibitory difference between the two cell proliferations was not significant. This study provided a new idea for non-bone bearing minimally invasive, defect repair and postoperative recovery of bone tumors, prevention and treatment of recurrence and metastasis, and provided an experimental basis for the rational application of functional element selenium.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065