期刊导航

论文摘要

Signorini问题的插值型边界无单元法

An Interpolating Boundary Element-Free Method for Signorini problems

作者:王延冲(重庆师范大学数学学院);李小林(重庆师范大学数学学院)

Author:WANG Yan-Chong(College of Mathematics, Chongqing Normal University);LI Xiao-Lin(College of Mathematics, Chongqing Normal University)

收稿日期:2014-04-04          年卷(期)页码:2016,53(4):736-742

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:无网格方法;Signorini问题;改进的移动最小二乘插值法;插值型边界无单元法

Key words:Meshless method; Signorini problem; Improved interpolating moving least-square method; Interpolating boundary element-free method

基金项目:国家自然科学基金(11101454)

中文摘要

将改进的移动最小二乘插值法和边界积分方程结合,提出了求解Signorini问题的一种新的边界类型无网格方法——插值型边界无单元法. 该方法用投影算子处理Signorini问题中的非线性边界不等式条件,然后将Signorini问题归化为边界积分方程,并用改进的移动最小二乘插值法近似未知的边界变量.理论分析了该方法的收敛性.数值算例表明了该方法在求解Signorini问题时的可行性和有效性,相对于边界元方法也具有更好的精度和收敛速度.

英文摘要

Combining the improved interpolating moving least-square (IIMLS) method and boundary integral equations (BIEs), a novel boundary-only meshless method, the interpolating boundary element-free method (IBEFM), is developed for the numerical solution of Signorini problems. In this method, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the IIMLS method. The convergence of the meshless method is derived mathematically. Numerical examples showed high accuracy and high convergence rates of the method. The results have shown the feasibility and effectiveness of the method for Signorini problems, and the precision and convergence rate of the results is better than those of the boundary element method.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065