期刊导航

论文摘要

基于机器学习的论文作者名消歧方法研究

RResearch on author name disambiguation method based on machine learning

作者:邓可君(北京大学计算中心);华凯(北京大学计算中心);邓昌明(北京大学计算中心);姜宁(北京大学计算中心);袁玲(北京大学计算中心);彭一明(北京大学计算中心);张治坤(北京大学计算中心)

Author:Deng Kejun(Computer Center, Peking University);Hua Kai(Computer Center, Peking University);Deng Changming(Computer Center, Peking University);Jiang Ning(Computer Center, Peking University);Yuan Ling(Computer Center, Peking University);Peng Yiming(Computer Center, Peking University);Zhang Zhikun(Computer Center, Peking University)

收稿日期:2018-10-17          年卷(期)页码:2019,56(2):241-245

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:作者名消歧;机器学习;文本特征提取

Key words:Author name disambiguation; machine learning; text feature extraction

基金项目:

中文摘要

本文提出了一种基于规则匹配和机器学习的论文作者名自动化消歧方法:首先基于人工构建的人名匹配规则确定候选作者,对于存在多个候选人的情况,基于论文的属性信息(例如合作者、标题、摘要、关键词和出版物名称等)提取特征,然后选取合适的机器学习算法进行消歧.实验效果表明K近邻和Softmax分类器较适合于论文作者名消歧任务;此外,将作者信息与论文的其他信息分开提取特征能够有效提高作者名消歧的准确性.

英文摘要

This paper proposes an automatic article author name disambiguation method based on rule matching and machine learning. For each article, the candidate authors are determined based on artificial constructed name matching rules firstly. For the cases of multiple candidates, features are extracted from the attribute information of the article, such as collaborators, title, abstract, key words and publication name, and then selected machine learning models are applied to author name disambiguating. The experimental results show that the K-nearest neighbor and Softmax classifier are more suitable for the author name disambiguation task than other models. In addition, extracting features of the authors information from other information separately can effectively improve the accuracy of the author name disambiguation.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065