期刊导航

论文摘要

基于主题模型的中文词义归纳

Chinese word sense induction based on topic model

作者:高章敏(四川大学电子信息学院; 保密通信重点实验室);何祥(四川大学电子信息学院);刘嘉勇(四川大学电子信息学院; 保密通信重点实验室);汤殿华(保密通信重点实验室)

Author:GAO Zhang-Min(College of Electronics and Information Engineering, Sichuan University; Science and Technology on communication Security Laboratory);HE Xiang(College of Electronics and Information Engineering, Sichuan University);LIU Jia-Yong(College of Electronics and Information Engineering, Sichuan University; Science and Technology on communication Security Laboratory);TANG Dian-Hua(Science and Technology on communication Security Laboratory)

收稿日期:2015-12-25          年卷(期)页码:2016,53(6):1269-1272

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:词义归纳;主题模型;隐含狄利克雷分布

Key words:word sense induction;topic model;LDA

基金项目:

中文摘要

词义归纳(word sense induction,简称WSI)是在给定包含多义词语料的条件下,识别出多义词词义的过程,通常是采用聚类的方法。本文提出了基于主题模型的方法来解决中文词义归纳问题,基于主题模型的词义归纳方法使用文档的主题概率分布来推断多义词的词义分布。实验结果表明,本文方法在测试数据上获得了77.58% F-Score值。

英文摘要

Sense Induction is the process of identifying the word sense given its context, often treated as a clustering task. In this paper, we present a approach to Chinese Word Sense Induction which is based on topic modeling. Key to our methodology is the use of probabilistic assignment of topics distributions to documents to estimate sense distributions. Experimental results show that our method could achieve 77.58% scores of F-score on the development data set.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065