期刊导航

论文摘要

二阶非线性积分边值问题正解的存在唯一性

Existence and uniqueness of positive solutions for second-order nonlinear integral boundary value problem

作者:蔡蕙泽(西北师范大学数学与统计学院);韩晓玲(西北师范大学数学与统计学院)

Author:Cai Hui-Ze(College of Mathematics and Statistics, Northwest Normal University);Han Xiao-Ling(College of Mathematics and Statistics, Northwest Normal University)

收稿日期:2018-07-02          年卷(期)页码:2019,56(3):399-403

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:正解;存在唯一性;积分边值问题; 广义压缩不动点定理

Key words:Positive solution; Existence and uniqueness; Integral boundary value problem; Generalized contractive fixed point theorem

基金项目:国家自然科学基金(11561063)

中文摘要

本文运用双度量空间中广义Krasnoselskii's压缩不动点定理研究了二阶非线性积分边值问题\$$u''+a(t)f(t,u(t),u'(t))=0,~t\in(0,1),$$ $$u(0)=0,~\alpha\int_{0}^{\eta}u(s)ds=u(1)$$ 正解的存在唯一性,~其中$~00,~$且$f:[0,1]\times[0,\infty)\times R\rightarrow[0,\infty)$是连续的.}

英文摘要

In this paper,by using the method of generalized Krasnoselskii's contractive fixed point theorem in bimetric spaces we study the existence and uniqueness of the positive solutions for the following second-order nonlinear integral boundary value problem\$$u''+a(t)f(t,u(t),u'(t))=0,~t\in(0,1),$$ $$u(0)=0,~\alpha\int_{0}^{\eta}u(s)ds=u(1),$$ where$~00,~$and$~f:[0,1]\times[0,\infty)\times R\rightarrow[0,\infty)~$is continuous.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065