期刊导航

论文摘要

允许 Green 函数取零值情形下 Neumann 问题的正解

Positive solutions of Neumann problem with Green's function vanishing at some points

作者:赵中姿(西北师范大学数学与统计学院)

Author:Zhao Zhong-Zi(College of Mathematics and Statistics, Northwest Normal University)

收稿日期:2018-05-18          年卷(期)页码:2019,56(3):392-398

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:Neumann问题; 正解; Krasnosel'skii不动点定理; Green函数

Key words:Neumann problem; Positive solution; Krasnosel'skii fixed-point theorem; Green's function

基金项目:国家自然科学基金(11671322)

中文摘要

本文研究了一类二阶非线性常微分方程Neumann边值问题 $$ \left\{\begin{array}{ll} y''+\ a(t)y=\lambda g(t)f(y),~~\ \ \ t\in [0,1],\\[2ex] \ y'(0)=\ y'(1)=0, \end{array} \right.\eqno $$正解的存在性,~其中~$\lambda$~是一个正参数,~$f$~在~$\infty$~处是超线性的且~$f$ 允许变号,此外与这一问题相关的Green 函数可以在某些点等于0. 主要结果的证明基于Krasnosel'skii不动点定理.

英文摘要

In this paper,~we study the existence of positive solutions for a class of second-order nonlinear Neumann problem \[ \begin{cases} y''+a(t)y=\lambda g(t)f(y),~~t\in[0,1],\y'(0)=y'(1)=0, \end{cases} \] where~$\lambda>0$~is a positive parameter,~$f$~is superlinear at infinity,allowed to change sign, and the Green's function associated with this problem may vanish at some points. The proof of the main result is based on the Krasnosel'skii fixed-point theorem.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065