期刊导航

论文摘要

一类Rayleigh型 $p-$Laplacian平均曲率方程周期解存在唯一性

Existence and uniqueness of periodic solutions for prescribed mean curvature Rayleigh $p-$Laplacian equation

作者:陈文斌(武夷学院数学与计算机学院)

Author:CHEN Wen-Bin(School of Mathematics and Computer Science, Wuyi University)

收稿日期:2015-05-06          年卷(期)页码:2016,53(6):1195-1201

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:周期解; 平均曲率; 重合度定理; Rayleigh; $p-$Laplacian

Key words:Periodic solution; Prescribed mean curvature; Continuation theory; Rayleigh; $p-$Laplacian

基金项目:武夷学院青年教师科研项目(No:XQ201305)

中文摘要

运用重合度理论和一些新的分析方法探讨了一类 Rayleigh型 $p-$Laplacian平均曲率 方程 \begin{displaymath} \left(\varphi_{p}\left(\frac{x'(t)}{\sqrt{1+(x'(t))^{2}}}\right)\right)'+f(x'(t))+g(x(t-\tau (t)))=e(t) \end{displaymath} 周期解存在性与唯一性问题, 得到了一些相应的新结果并举例说明其结果的有效性.

英文摘要

In this paper, by using the continuation theorem of coincidence degree theory and some analysis methods, we study the existence and uniqueness of periodic solutions for prescribed mean curvature Rayleigh $p-$Laplacian equation \begin{displaymath} \left(\varphi_{p}\left(\frac{x'(t)}{\sqrt{1+(x'(t))^{2}}}\right)\right)'+f(x'(t))+g(x(t-\tau (t)))=e(t). \end{displaymath} Some new results are obtained. Furthermore, a numerical example demonstrates the validity of the main results.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065