期刊导航

论文摘要

双基球扁发射药生产线的改进遗传排产算法研究

Research on improved genetic scheduling algorithm for double based ball flat propellant production line

作者:周原令(四川大学制造学院);胡晓兵(四川大学制造科学与工程学院, 成都 610065);霍云亮(四川大学制造科学与工程学院, 成都 610065);张瀚铭(四川省绵阳西南自动化研究所, 绵阳 621000)

Author:Zhou Yuanling(College of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China);HU XiaoBing(College of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China);HUO YunLiang(College of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China);ZHANG HanMing(Mianyang Southwest Automation Research, Sichuan Province, Mianyang 621000, China)

收稿日期:2019-03-01          年卷(期)页码:2019,56(4):627-632

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:改进遗传算法; 排产; 块基因插补策略; 邻域重组策略;

Key words:Improved Genetic Algorithm Scheduling Block Gene Interpolation Strategy(BGIS) Neighborhood Reorganization Strategy(NRS)

基金项目:含能材料生产数字化车间关键技术研究及应用(2017KJT0051-2017GZ0064)

中文摘要

针对传统遗传算法在解决批次生产问题中存在的“早熟收敛”以及“局部搜索能力差”等问题,设计了基于预处理技术的改进遗传算法,实现对批次生产过程的处理.采用随机数法、定则生成法和块基因插补法三种方法,按照合适的比例,进行种群的初始化,在保证初始化种群多样性同时提高其个体质量;通过精英保留策略和锦标赛选择策略进行选择操作,实现优质种群个体的选择;运用专家打分法对产品进行优先级排序;采用基于位置和优先级相结合的方法选择交叉位点,进行交叉操作,保留父代优良基因,避免“早熟收敛”;采用邻域重组策略进行变异操作,保证优质解种群的产生和质量解的继承.以最大化最小交货提前期为目标函数,实现排产算法研究.最后,以双基球扁发射药生产线为例,实现了改进遗传算法排产过程,大大提高公司的接单预估效率和产线的生产组织效率,然后运用单一随机初始化种群法和混合初始种群法进行比较分析,证明了改进算法的优越性.

英文摘要

Aiming at the problems of premature convergence and poor local search ability of traditional Genetic Algorithm(GA) in batch production process optimization, an Improved Genetic Algorithm(IGA) is designed by means of pretreatment technology. Random number method(RNM), rule generation method(RGM), and block gene interpolation method(BGIM) are used to initialize the population according to the appropriate ratio, which not only ensures the initial population diversity but also improves the individual quality. Elite retention strategies(ERS) and tournament selection strategies(TSS) are used to select individuals with good performance. A method is used to select crossover sites and take crossover operation based on the combination of location and priority obtained by expert marking, which preserves the superior genes and avoids “premature convergence”. The mutation operation is carried out via the neighborhood reorganization strategy(NRS) to ensure the generation of high quality solution populations and the inheritance of quality solutions. IGA regards maximizing the minimum delivery lead time as the objective function and realizes the scheduling algorithm research. Finally, the double base ball flat propellant production line is taken as an example to realize the scheduling process based on IGA, which greatly improved the order estimation efficiency of the company and the organization efficiency of the production line. The superiority of IGA is demonstrated by comparing both single and mixed initial population method.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065