期刊导航

论文摘要

咪唑类ALK5抑制剂活性的神经网络研究

Neural network research on activities of imidazole activin receptor-like kinase 5 (ALK5) inhibitors

作者:堵锡华(徐州工程学院化学化工学院);李靖(徐州工程学院化学化工学院);吴琼(徐州工程学院化学化工学院);周俊(徐州工程学院化学化工学院);陈艳(徐州工程学院化学化工学院);石春玲(徐州工程学院化学化工学院);冯惠(徐州工程学院化学化工学院)

Author:DU Xi-Hua(School of Chemistry and Chemical Engineering, Xuzhou Institute of Technology);LI Jing(School of Chemistry and Chemical Engineering, Xuzhou Institute of Technology);WU Qiong(School of Chemistry and Chemical Engineering, Xuzhou Institute of Technology);ZHOU Jun(School of Chemistry and Chemical Engineering, Xuzhou Institute of Technology);CHEN Yan(School of Chemistry and Chemical Engineering, Xuzhou Institute of Technology);SHI Chun-Ling(School of Chemistry and Chemical Engineering, Xuzhou Institute of Technology);FENG Hui(School of Chemistry and Chemical Engineering, Xuzhou Institute of Technology)

收稿日期:2018-06-04          年卷(期)页码:2019,56(5):933-938

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:咪唑类衍生物;ALK5 抑制剂;分子结构参数;神经网络法;多元回归分析

Key words:Imidazole derivatives;ALK5 inhibitors;Molecular structure parameter;Neural network method;Multiple regression analysis

基金项目:国家自然科学基金,省自然科学基金

中文摘要

为建立咪唑类ALK5抑制剂活性的QSAR预测模型,分析了61个咪唑类ALK5抑制剂的分子结构与活性的相关关系,计算了这些抑制剂分子的分子形状指数、电性拓扑状态指数和电性距离矢量,优化筛选了分子形状指数的K1和K3、电性拓扑状态指数的E19、E21和E24、电性距离矢量的M26、M30和M56共8种参数,将其作为人工神经网络的输入神经元变量,活性pIC50作为输出神经元变量,采用8:4:1的神经网络结构,获得了较为令人满意的神经网络预测模型,模型的总相关系数r为0.956,pIC50的预测值与实验值较为吻合,平均相对误差仅为0.85%,结果表明,本法建构的神经网络模型具有较强的稳健性和良好的预测能力,研究可为合成高活性的抗癌新药提供理论指导.

英文摘要

In order to establish the QSAR model to predict activities of imidazole ALK5 inhibitors, the relationship between molecular structures and the activities (pIC50) of 61 kinds of imidazole ALK5 inhibitors was analyzed. Moreover, the molecule shape indices, electrical topological state indices and electric distance vectors of these compounds were calculated. The molecule shape indices K1 and K3, the electrical topological state indices E19, E21 and E24, as well as electric distance vectors M26, M30 and M56, were optimized and screened. The eight parameters were used as input layer neuron variables of neural network and the activity data pIC50 was used as output layer neuron variable, the 8:4:1 neural network structure was adopted and the artificial neural network method was used to establish a more satisfying QSAR prediction model. The total correlation coefficient r is 0.956. The predicted values of pIC50 and experimental values are very close, and the mean relative error is 0.85%. The results showed that the neural network model has strong stability and good predictive ability. It can provide guidance for the synthesis of new anticancer drugs with high activity.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065