期刊导航

论文摘要

各向异性线弹性问题的鲁棒V-循环多重网格法

Robust V-cycle multigrid method for anisotropic linear elasticity problems

作者:白艳红(西华大学理学院);吴永科(电子科技大学数学科学学院);覃艳梅(内江师范学院四川省高等学校数值仿真重点实验室/数学与信息科学学院)

Author:BAI Yan-Hong(School of Sciences, Xihua University);WU Yong-Ke(School of Mathematical Sciences, University of Electronic Science and Technology of China);QIN Yan-Mei(Key Laboratory of Numerical Simulation in Sichuan Provincial College & School of Mathematics and Information Science, Neijiang Normal University)

收稿日期:2019-04-26          年卷(期)页码:2019,56(5):819-826

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:线弹性, 各向异性, 双线性元, 多重网格法

Key words:Linear elasticity; Anisotropic; Bilinear element; Multigrid method

基金项目:国家自然科学基金(11701481)

中文摘要

本文对各向异性线弹性方程的双线性有限元法离散系统构造一种鲁棒的V-循环多重网格法. 通过Xu-Zikatanov (XZ)等式,本文得到了所构造多重网格算法的不依赖于各向异性参数ε,而弱依赖h的拟最优收敛性. 由于分析中未用到线弹性方程的"正则性"假设, 该收敛性结果可以推广到一般的可剖分成正方形网格的区域上. 数值实验验证了理论结果.

英文摘要

A Robust V-cycle multigrid method is constructed for the linear system arising from the bilinear finite element discretization of anisotropic linear elasticity equations. By using the Xu-Zikatanov (XZ) identity, quasi-optimal convergence of the method is established in the sense that the multigrid method is independent of the parameterε and dependent on h in a very weakly way. Since the 'regularity assumption' is not used in the analysis, the results can be extended to domains consisting of rectangles. Numerical experiments confirm the theoretical results.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065