期刊导航

论文摘要

基于贪心策略的多目标跟踪数据关联算法

Multi-target Tracking Data Association Algorithm Based on Greedy Strategy

作者:张良(四川大学计算机学院);王运锋(四川大学计算机学院; 国家空管自动化系统技术重点实验室)

Author:ZHANG Liang(College of Computer Science, Sichuan University);WANG Yun-Feng(College of Computer Science, Sichuan University; National Key Laboratory of Air Traffic Control Automation System Technology)

收稿日期:2017-03-21          年卷(期)页码:2018,55(1):0056-0060

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:多目标跟踪;数据关联;正确关联率;向量范数;蒙特卡罗仿真

Key words:Multi-target Tracking;Data Association;Related correct rate;Vector Norm;Monte-Carlo Simulation

基金项目:国家自然科学基金

中文摘要

摘 要:针对多目标跟踪中数据关联问题,提出一种新的数据关联方法,该算法先计算航迹和点迹的欧式距离以及其状态向量的在1范数下的距离,并将两者的和作为关联测度,构建关联概率矩阵.根据关联概率矩阵,对每条航迹都找到最适合(关联概率最大)的点迹,若点迹只是一条航迹的候选点迹则予以更新,若点迹是多条航迹的候选点迹,则选择其中概率最高的一条航迹予以更新.蒙特卡罗仿真表明,该算法在最大程度上保证了对每条航迹更新的点迹尽量是当前所有点迹中最优的点.

英文摘要

Abstract:In this paper,a new association method is proposed to tackle the data association problem of multi-target tracking.In this algorithm, building the associative matrix with the Euclidean distance and the 1-Norm of state vector between tracks and points firstly.And using the associative matrix find the most suitable(Maximum matching success rate)points for every track. If the points just marked by one track, update this track directly; if the points marked by many tracks, choose the track with highest probability to update. Monte-Carlo Simulation experiments show that this algorithm guarantees the updating points for every tracks are the best points among all present points.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065