期刊导航

论文摘要

带Robin边界条件的分数阶对流-扩散方程的数值解法

Numerical methods of the fractional advection-dispersion equation with Robin boundary condition

作者:曾宝思(华南农业大学数学与信息学院);尹修草(华南农业大学数学与信息学院);谢常平(华南农业大学数学与信息学院);房少梅(华南农业大学数学与信息学院)

Author:ZENG Bao-Si(Department of Mathematics and Information, South China Agricultural University);YIN Xiu-Cao(Department of Mathematics and Information, South China Agricultural University);XIE Chang-Ping(Department of Mathematics and Information, South China Agricultural University);FANG Shao-Mei(Department of Mathematics and Information, South China Agricultural University)

收稿日期:2017-10-16          年卷(期)页码:2018,55(1):0013-0017

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:分数阶对流-扩散方程;Robin边界;隐式有限差分格式;稳定性;收敛性

Key words:Fractional advection-dispersion equation; Robin boundary; Implicit finite difference method; Unconditionally stability; Convergence

基金项目:国家自然科学基金(11271141)

中文摘要

本文对带Robin边界条件的分数阶对流-扩散方程进行了数值研究.利用移位Grünwald公式对Riemann-Liouville空间分数阶导数进行离散,在此基础上建立一种隐式有限差分格式,讨论了它差分解的存在唯一性;然后分析了该格式的相容性、稳定性和收敛性;最后通过数值算例验证格式是可靠和有效的.

英文摘要

In this paper, we study the practical numerical methods to solve the fractional advection-dispersion equation with Robin boundary condition. We propose an implicit finite difference scheme based on the shifted Grünwald formula to discretize Riemann-Liouville fractional derivative. Existence and uniqueness of numerical solutions are derived. It is proved that the implicit finite difference scheme is unconditionally stable and convergent. Finally, numerical simulations show that the method is efficient.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065