期刊导航

论文摘要

基于灰度DAG熵最大化量化分辨率医学图像增强

Gray level DAG maximum entropy based on quantization resolution for Medical image tone enhancement

作者:宋璐(陕西中医药大学医学技术学院);冯艳平(郑州职业技术学院电气电子工程系);卫亚博(平顶山学院电气工程系)

Author:SONG Lu(Department of medical technology, Shanxi University of Chinese Medicine);FENG Yan-Ping(Department of Electical and Electronic Engineering, Zhengzhou Technical College);WEI Ya-Bo(Department of electrical engineering, Pingdingshan College)

收稿日期:2017-01-13          年卷(期)页码:2018,55(2):316-322

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:图像增强;有向无环图;分段自回归;最小二乘;色调保持;最大熵

Key words:image enhancement; directed acyclic graph; piecewise autoregressive; least squares; color retention; maximum entropy

基金项目:

中文摘要

为提高医学图像增强的清晰度和对比度,并提高计算效率,提出一种基于灰度有向无环图(Directed acyclic graph,DAG)熵最大化量化分辨率医学图像色调增强算法。首先,采用简单的分段自回归(Piecewise autoregressive,PAR)模型进行图像目标恢复,并考虑到模数转换的误差利用全最小二乘算法进行PAR模型参数估计,获得高分辨率图像恢复直方图模型;其次,针对可能存在的对比度过低问题,将上述获得的最小二乘算法约束优化问题,建模为DAG中的最大权重路径问题,构建了色调保持最大熵图像增强过程约束优化模型,并通过DAG 图Monge定理特性实现计算复杂度的降低;通过上述两个步骤,实现了医学图像增强过程中图像细节和对比度的同步增强,仿真实验显示所提算法可提供更为有效的医学图像增强效果。

英文摘要

In order to improve the medical image sharpness and contrast, and improve the computational efficiency, we proposed the gray level DAG maximum entropy based on quantization resolution for Medical image tone enhancement. Firstly, we used a simple piecewise autoregressive (Piecewise autoregressive PAR) image target model for recovery, and taked into account the error of analog to digital conversion to use least squares algorithm to estimate PAR model parameter, which obtain high resolution image histogram restoration model; Secondly, aiming at the problem of low contrast may exist, the least squares algorithm for constrained optimization problems was modeled in DAG, which constructed a hue preserving constraint optimization model of maximum entropy image enhancement, and the characteristics of the DAG figure Monge theorem was used to reduce the computational complexity; Through the above two steps, the image details and contrast enhancement in the process of medical image enhancement are realized. The simulation results show that the proposed algorithm can provide more effective medical image enhancement effect.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065