期刊导航

论文摘要

一类三阶周期边值共振问题解的存在性

Existence of Solutions for a Class of Third-Order Periodic Boundary Value Problems at Resonance

作者:魏丽萍(西北师范大学数学与统计学院)

Author:WEI Li-Ping(College of Mathematics and Statistics, Northwest Normal University)

收稿日期:2017-05-26          年卷(期)页码:2018,55(2):260-264

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:Lyapunov-Schmidt~过程;~连通集;~无序上下解;~共振;~存在性

Key words:Lyapunov-Schmidt procedure;~Connected set;~Disordered lower and upper solutions;~Resonance;~ Existence

基金项目:国家自然科学基金资助项目(11671322);天元基金(11626061)

中文摘要

本文运用了~Lyapunov-Schmidt~过程和紧向量场方程的解集连通理论为三阶周期边值共振问题 $$ \left\{\begin{array}{ll} v'''(t)=f(t,v(t)),~~\ \ \ t\in [0,T],\\[2ex] v^{(i)}(0)-v^{(i)}(T)=0 ,\ \ \ i=0,1,2 \end{array} \right.\eqno $$ 发展上下解方法,~并且得到其解的存在性结果,~其中函数~$f: [0,T]\times \mathbb{R}\rightarrow \mathbb{{R}}$~连续且有界.

英文摘要

By using the Lyapunov-Schmidt procedure and the connectivity theory of the solution set of compact vector fields,~we develope the method of upper and lower solutions and obtain the existence of solutions for a third-order periodic boundary value problem at resonance~ $$ \left\{\begin{array}{ll} v'''(t)=f(t,v(t)),~~\ \ \ t\in [0,T],\\[2ex] v^{(i)}(0)-v^{(i)}(T)=0 ,\ \ \ i=0,1,2, \end{array} \right.\eqno $$ where~$f: [0,T]\times \mathbb{R}\rightarrow \mathbb{R}$~is continuous and bounded.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065