期刊导航

论文摘要

Sandwiched Renyi 量子相对熵单调性的另一证明

A new proof for monotonicity of sandwiched Renyi relative entropy

作者:王友乐(四川大学数学学院);罗懋康(四川大学数学学院);邓科(四川大学数学学院)

Author:wang you le(Mathematics college of Sichuan University);Luo Maokang(Mathematics college of Sichuan University);DENG Ke(Mathematics college of Sichuan University)

收稿日期:2017-04-19          年卷(期)页码:2018,55(2):257-259

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:Sandwiched Renyi量子相对熵 单调性

Key words:Sandwiched Renyi quantum relative entropy monotonicity

基金项目:

中文摘要

已知量子信息中的量子相对熵在保迹完全正定的映射作用下是单调递减的。对于一种新提出的sandwiched R\'enyi量子相对熵,也已证明当映射满足薛瓦兹不等式或映射是保迹正定时,该量子相对熵的单调性也成立。我们给出$\alpha\in[\frac{1}{2},1)$时sandwiched R\'enyi量子相对熵单调性的另一证明,证明方法用到了复插值技巧,这个技巧曾经运用于证明$\alpha\in(1,\infty)$时量子相对熵在保迹正定映射的作用下也满足单调性。

英文摘要

Itis well known that in quantum information quantum relative is monotonically decreasing under the completely positive and trace-preserving maps. For a new proposed sandwiched R\'enyi quantum relative, a map that is linear trace-preserving and whose Hilber-Schmidt adjoint map satisfies Schwarz inequality, monotonicity still holds. We give a new proof of monotonicity of sandwiched R\'enyi relative entropy for $\alpha\in[\frac{1}{2},1)$. The proof is based on complex interplotation techniques, which already has been used to prove monotonicity under trace-preserving and positive map for $\alpha\in(1,\infty)$.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065