期刊导航

论文摘要

基于马尔科夫生存模型与粒子群算法 的动态航路规划

Online route planning based on mMarkov survival model and PSO algorithm

作者:崔舒婷(四川大学电子信息学院);赵成萍(四川大学电子信息学院);周新志(四川大学电子信息学院);宁芊(四川大学电子信息学院);严华(四川大学电子信息学院;电子信息控制重点实验室)

Author:CUI Shu-Ting(College of Electronics and Information Engineering, Sichuan University);ZHAO Cheng-Ping(College of Electronics and Information Engineering, Sichuan University);ZHOU Xin-Zhi(College of Electronics and Information Engineering, Sichuan University);NING Qian(College of Electronics and Information Engineering, Sichuan University);YAN Hua(College of Electronics and Information Engineering, Sichuan University;Science and Technology on Electronic Information Control Laboratory)

收稿日期:2017-03-19          年卷(期)页码:2018,55(3):501-506

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:动态航路规划;马尔科夫生存模型;粒子群算法;自适应权重

Key words:Online route planning; Markov survival model; PSO algorithm; Self-adaptive weight

基金项目:973计划科研项目(2013CB328903)

中文摘要

针对未知情况下航路规划问题,采用动态规划策略保证飞机可以实时规划未来路径,并引入基于马尔科夫的生存模型来获取飞机的生存状态概率,从而评估生存代价,再综合任务、油耗、飞机机动性等作为粒子群算法的目标函数与约束条件,同时为了缓解生存与任务之间的矛盾,引入目标函数权重自适应策略。仿真实验证明,提出的动态航路规划策略是可行的,自适应权重也在一定程度上缓解了生存与任务之间的矛盾,同时将基于马尔科夫的生存模型应用于动态航路搜索中,确实能够更加直观的掌握每一时刻飞机的生存代价以及各状态的概率。

英文摘要

Aiming at the problem of route planning for aircraft under unknown condition, the online planning strategy is adopted to ensure that the aircraft can plan the future path in real time, and Markov survival model is introduced to obtain the survival probability of the aircraft, so as to evaluate the survival cost. Furthermore, missions, oil confusion, aircraft maneuverability are set as the objective function and constraints of PSO (Particle Swarm Optimization) algorithm. At the same time, self-adaptive weight strategy is presented to alleviate the contradiction between survival and missions. The simulation results show that the proposed online route planning strategy is feasible, and the self-adaptive weight also alleviates the contradiction between the survival and the mission. The application of Markov survival model in online route planning can indeed have more effective command at the survival cost and state probability of aircraft in each moment.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065