期刊导航

论文摘要

基于用户非对称相似性的协同过滤推荐算法

Collaborative filtering recommendation algorithm based on asymmetric similarity of users

作者:黄贤英(重庆理工大学计算机科学与工程学院);龙姝言(重庆理工大学计算机科学与工程学院);谢晋(重庆理工大学计算机科学与工程学院)

Author:HUANG Xian-Ying(School of Computer Science and Engineering, Chongqing University of Technology);LONG Shu-Yan(School of Computer Science and Engineering, Chongqing University of Technology);XIE Jin(School of Computer Science and Engineering, Chongqing University of Technology)

收稿日期:2017-06-23          年卷(期)页码:2018,55(3):489-493

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:协同过滤;推荐算法;非对称相似;矩阵分解

Key words:Keywords: Collaborative filtering; Recommendation algorithm; Asymmetric similarity; Matrix factorization

基金项目:教育部人文社科青年项目(16YJC860010); 重庆市社会科学规划博士项目(2015BS059); 国家自然科学基金(61603065);国家统计局全国统计科学研究重点项目(2016LZ08); 教育部人文社会科学研究项目(15YJC790061)

中文摘要

针对传统协同过滤推荐算法的数据稀疏以及用户关系衡量不准确的问题,提出了基于用户非对称相似关系的推荐算法。利用用户的潜在特征的样本数量,结合奇异值矩阵分解,计算用户之间非对称的相似度,明确用户间关系。仿真结果表明,随着邻居数量的增加,该算法的平均绝对误差始终优于传统算法,误差值在邻居数量为40-60之间值为最小,约为0.682,传统算法平均绝对误差值约为0.758,可以看出该算法判断用户关系较为准确,预测评分比传统算法更接近实际评分。

英文摘要

Aiming at data sparseness and inaccurate user relationship in traditional collaborative filtering recommendation algorithm, an improvement recommendation algorithm based on asymmetric similarity relationship of users is proposed.By using the sample number of potential features and the decomposition of singular value matrix, the asymmetric similarity between users is calculated, and the relation between users is defined.The simulation results show that , the Mean Absolute Error of the algorithm is superior to the traditional algorithm with the increase of the number of neighbours,the minimal value is about 0.682 between the number of neighbors is 40-60. The value of Mean Absolute Error is about 0.758 of the traditional algorithm. It can be seen that the algorithm to determine the user relationship is more accurate, predictive score is relatively close to the actual score.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065