期刊导航

论文摘要

非线性二阶周期边值问题正解的全局结构

Global structure of positive solutions for a nonlinear second order periodic boundary value problem

作者:叶芙梅(西北师范大学数学与统计学院)

Author:YE Fu-Mei(College of Mathematics and Statistics, Northwest Normal University)

收稿日期:2017-10-08          年卷(期)页码:2018,55(3):452-456

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:周期边值问题;~正解全局结构;~多解性;~分歧理论

Key words:Pperiodic boundary value problem; Gglobal structure of positive solution; Multiplicity; Bifurcation theory

基金项目:国家自然科学基金(11671322); 国家自然科学基金天元基金(11626061)

中文摘要

本文获得了二阶周期边值问题 $$ \left\{\begin{array}{ll} u''-k^{2}u+\lambda a(t)f(u)=0,~~t\in[0,2\pi],\\[2ex] u(0)=u(2\pi),~u'(0)=u'(2\pi). \end{array} \right. $$ 正解的全局结构,~其中~$k>0$~为常数,~$\lambda$~是正参数,~$a\in C([0,2\pi],[0,\infty))$~且在~$[0,2\pi]$~的任何子区间内~$a(t)\not\equiv 0$,~$f\in C([0,\infty),[0,\infty))$.~主要结论的证明基于~Rabinowitz~全局分歧理论和逼近的方法.

英文摘要

In this paper,~we study the global structure of positive solution for second-order periodic boundary value problem $$ \left\{\begin{array}{ll} u''-k^{2}u+\lambda a(t)f(u)=0,~~t\in[0,2\pi],\\[2ex] u(0)=u(2\pi),~u'(0)=u'(2\pi). \end{array} \right. $$ where~$k>0$~is a constant,~$\lambda$~is positive parameter,~$a\in C([0,2\pi],[0,\infty))$~and~$a(t)\not\equiv 0$~on any subinterval of~$[0,2\pi]$,~$f\in C([0,\infty),~[0,\infty))$.~The proof of the main results is based on the Rabinowitz global bifurcation theorems and a approach by approximation.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065