期刊导航

论文摘要

带有分数阶边界条件的一维Riesz分数阶扩散方程差分方法

Finite difference approximations for one-dimensional Riesz fractional diffusion equation with fractional boundary condition

作者:刘桃花(湖南科技大学数学与计算机学院);侯木舟(中南大学数学与统计学院)

Author:LIU Tao-Hua(College of Mathematics and Computer Science, Hunan University of Science and Technology);HOU Mu-Zhou(School of Mathematics and Statistics, Central South University)

收稿日期:2018-01-30          年卷(期)页码:2018,55(5):941-946

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:Riesz分数阶扩散方程; 分数阶边界条件; Grünwald-Letnikov分数阶算子; 无条件稳定

Key words:Riesz fractional derivative; Fractional boundary condition; Grünwald-Letnikov fractional order operator; Unconditional stability

基金项目:国家自然科学基金项目(61375063, 61271355, 11271378, 11301549)

中文摘要

本文对带有分数阶边界条件的一维Riesz分数阶扩散方程进行了数值研究.本文利用分数阶中心差分公式对方程中的Riemann-Liouville空间分数阶导数进行离散,并且利用标准的Grünwald-Letnikov分数阶算子对分数阶边界条件中的Riemann-Liouville空间分数阶导数进行离散,进而建立了一种隐式有限差分格式,然后讨论了该方法的解的存在唯一性,分析了该格式的相容性、稳定性和收敛性.最后, 本文通过数值实例验证了该方法的有效性.

英文摘要

In this paper, we examine a practical numerical method to solve a one-dimensional Riesz fractional diffusion equation with fractional boundary conditions. In order to propose an implicit finite difference method, we use the fractional centered derivative approach to approximate the Riesz fractional derivative and use the standard Grünwald-Letnikov fractional order operator to discrete the Riemann-Liouville fractional derivative in fractional boundary conditions. Then we discuss the existence and uniqueness of solution for the method. The stability, consistency and convergence of the method are also established. Finally, a numerical experiment is proposed to show the effectiveness of the method.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065