期刊导航

论文摘要

中度振幅浅水波模型的行波解

Traveling wave solutions of a moderate amplitude shallow water wave model

作者:石义霞(岭南师范学院数学与计算科学学院);钟吉玉(岭南师范学院数学与计算科学学院)

Author:SHI Yi-Xia(School of Mathematics and Statistics, Lingnan Normal University);ZHONG Ji-Yu(School of Mathematics and Statistics, Lingnan Normal University)

收稿日期:2016-04-21          年卷(期)页码:2017,54(1):47-54

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:平面动力系统; 行波解; 中度振幅; 周期尖波解; 数值模拟.

Key words:Planar dynamical systems; Traveling wave solutions; Moderate amplitude; Periodic cusp wave solution; Numerical simulations

基金项目:国家自然科学基金面上项目(11371314 );广东省高等学校高层次人才项目(QBS201501);岭南师范学院自然科学研究培育项目(YL1504); 湛科[2016]56号

中文摘要

作者利用平面动力系统定性分析方法研究一个描述中度振幅单向传播的浅水波模型的行波解. 根据可积系统的动力学性质, 作者讨论了该模型行波系统的分岔, 进而得到了光滑孤立波解, 周期波解, 周期尖波解, 紧孤立波解, 扭波解及反扭波解的存在条件, 并且给出了这些解的精确表达形式. 进一步利用数学软件Maple 18给出了这些有界行波解的数值模拟.

英文摘要

The author studies the traveling wave solutions of a shallow water wave model with moderate amplitude by qualitative analysis methods of planar dynamical systems. Using the dynamical properties of the integrable systems, we discuss the bifurcation of its traveling wave system, from which we obtain the existence conditions of the bounded traveling solutions, including solitary wave solutions, periodic wave solutions, kink-like wave solutions and antikink-like wave solutions, and the exact expressions of these traveling wave solutions. Furthermore, we simulate these solutions by the Maple 18 software to verify our results.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065