期刊导航

论文摘要

Rosenau-RLW 方程的加权守恒差分格式

Conservative Weighted Finite Difference Scheme for the Rosenau-RLW Equation

作者:张曦(四川大学数学学院);胡兵(四川大学数学学院);胡劲松(西华大学理学院)

Author:ZHANG Xi(College of Mathematics, Sichuan University);HU Bing(College of Mathematics, Sichuan University);HU Jin-Song(School of Science, Xihua University)

收稿日期:2016-05-16          年卷(期)页码:2017,54(1):1-6

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:Rosenau-RLW方程;加权系数;守恒格式 ;存在唯一性;收敛性;稳定性

Key words:Rosenau-RLW equation, weighted coefficient, conservative scheme, Existence and Uniqueness, Convergence, Stability

基金项目:

中文摘要

本文对Rosenau-RLW方程初边值问题的数值解法进行了研究,提出了一个三层的加权差分格式,该格式较好地模拟了方程的守恒性质.讨论了差分解的存在唯一性,给出了差分解的先验估计和误差估计,利用能量方法分析了该格式的二阶收敛性、无条件稳定性.数值算例验证了格式的可靠性,并且适当调整加权系数,可以提高计算精度.

英文摘要

In this paper a numerical method for an initial-boundary problem of the Rosenau-RLW equation is considered. A three-layer weighted conservative difference scheme is proposed. The scheme simulates the conservation property of the equations. The existence of discrete solution is discussed. The priori and error estimates of the discrete solution are derived, and the second order convergence and unconditional stability of the discrete solution are analyzed by the discrete energy method. Numerical examples verify the reliability of the scheme, and that the accuracy of the calculation can be improved by adjusting weighted coefficient properly.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065