期刊导航

论文摘要

噪声抑制的高光谱图像虚拟维数分析

Virtual Dimensionality Analysis of Hyperspectral Imagery with Noise being Constrained

作者:何秉钧(四川农业大学);蒋鸣飞(中国电子科技集团公司第十研究所);罗欣(电子科技大学);王蓉(电子科技大学)

Author:HE Bin-Jun(Sichuan Agricultural University);JIANG Ming-Fei(The 10th Research Institute of Chinese Electronic Technology Group Corporation);LUO Xin(University of Electronic Science and Technology of China);WANG Rong(University of Electronic Science and Technology of China)

收稿日期:2016-07-26          年卷(期)页码:2017,54(2):303-308

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:高光谱图像;虚拟维数;QR分解;滑动噪声检测

Key words:hyperspectral imagery; virtual dimensionality; QR decomposition; sliding noise detection

基金项目:国家973计划项目(2013CB733400);中央高校基本科研业务费项目(ZYGX2013J120);中国博士后科学基金项目(20100471664);电子科技大学本科教育教学研究项目(2015XJYYB088)。

中文摘要

在高光谱数据降维过程中,通常用虚拟维数来表征数据的本征维数。经典的虚拟维数分析算法主要运用假设检验准则设定特征值门限,通过特征值判定来决定虚拟维数值。但是,在强噪声干扰下,经典算法不能有效分析出虚拟维数值。本文提出了一种噪声抑制的高光谱图像虚拟维数分析方法(NCVD),该算法通过对数据矩阵进行QR分解,减小了算法的运算量;采用滑动噪声检测窗口对噪声成分进行滤除,提高了估计维数的准确性;结合最小二乘算法对判别门限进行修正,使虚拟维数估计结果更具合理性;采用模拟数据和真实数据的实验结果,证明了本文所提算法的可行性和较现有算法的优越性。

英文摘要

In dimensionality reduction process of hyperspectral data, intrinsic dimension is normally characterized by virtual dimension. Classic algorithm mainly uses hypothesis-testing criterion to set eigenvalue threshold and correspondingly obtains virtual dimension. But under strong noises, it may not estimate very well. A noise constrained virtual dimension (NCVD) analysis method of hyperspectral imagery is proposed in this paper. It decreases the computational complexity by the QR decomposing; improves the accuracy of the estimated dimension by adopting sliding noise detection window to filter the noise; synthesizes the least squares algorithm to modify threshold for reasonable results. The experimental results prove the feasibility and superiority of the proposed algorithm by using simulated and real data.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065