期刊导航

论文摘要

Rosenau-KdV-RLW方程的一个三层线性化差分方法

A three-level linearized difference scheme for Rosenau-KdV-RLW equation

作者:李佳佳(西华大学理学院);张虹(西华大学理学院);王希(西华大学理学院);胡劲松(西华大学理学院)

Author:LI Jia-Jia(School of Science,Xihua University);ZHANG Hong(School of Science, Xihua University);WANG Xi(School of Science, Xihua University);HU Jin-Song(School of Science, Xihua University)

收稿日期:2017-10-25          年卷(期)页码:2018,55(6):1137-1140

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:Rosenau-KdV-RLW方程;;线性化差分格式;收敛性;稳定性

Key words:Rosenau-KdV-RLW equation; the linearized difference scheme; convergence; stability

基金项目:四川省教育厅重点科研基金(16ZA0167);西华大学重点科研基金(Z1513324);西华大学研究生创新基金(ycjj2018048)

中文摘要

本文对带有齐次边界条件的Rosenau-KdV-RLW方程的初边值问题进行了数值研究,提出了一个具有二阶理论精度的三层线性化差分格式,证明了差分解的存在唯一性. 尽管无法得到差分解的最大模估计,本文仍然综合运用数学归纳法和离散泛函分析方法证明了该格式的收敛性和稳定性.数值实验表明该方法是可靠的.

英文摘要

In this paper, numerical solution of the initial-boundary value problem for the Rosenau-KdV-RLW equation under homogeneous boundary is considered. A three-level linear difference scheme with second order accuracy is proposed and the existence and uniqueness of the difference solution are proved. Despite the absence of the maximum mold estimation of the difference solutions, we still prove that the difference scheme is convergent and stable by using the mathematical induction and discrete function analysis. The analytical results are demonstrated by the numerical examples.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065