期刊导航

论文摘要

定常Navier-Stokes方程基于速度投影的等阶元稳定化方法

Velocity Projection-Based Stabilized Finite Element Method for Steady Navier-Stokes Equations using equal order interpolation

作者:张百驹(四川大学数学学院);李辉(四川石油天然气建设工程有限责任公司)

Author:ZHANG Bai-Ju(College of Mathematics, Sichuan University);LI Hui(Sichuan Petroleum and Gas Construction Engineering Co. Ltd.)

收稿日期:2016-04-12          年卷(期)页码:2017,54(2):231-238

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:定常 Navier-Stokes 方程,速度$L^2$投影稳定,对流占优,等阶元,压力投影稳定法

Key words:steady Navier-Stokes equations, velocity $L^2$ projection, con\-vection-dominated,equal order element, pressure projection stabilized method.

基金项目:国家自然科学基金

中文摘要

针对定常的Navier-Stokes方程给出并分析了基于速度场$L^2$投影的新型稳定化有限元方法。速度-压力逼近采用了$P_1/P_1$ 元。为了克服等阶元不满足inf-sup条件,增加了压力投影稳定项。基于速度投影的稳定化方法增强了$L^2$ 范数的稳定性,而不同以往增强的是$H^1$范数的稳定性。该稳定化格式的优点是, 所有的计算都在同一套网格上执行, 不需要嵌套网格且只涉及速度场投影不需要求解速度梯度投影。假设连续的Navier-Stokes方程存在唯一一支非奇解的情况下,证明了该离散格式是稳定的,且存在唯一的一支非奇解。此外还得出了离散解的误差估计,数值实验证实该方法是有效的。

英文摘要

A new type of velocity $L^2$ projection-based stabilized finite element method for steady Navier-Stokes equations is proposed and analyzed. Velocity and pressure are approximated equal order element $P_1/P_1$. To overcome the violation of discrete inf-sup condition when equal order elements are used, pressure projection stabilized term is added. Velocity projection-based stabilized method directly increases the $L^2$-stability instead of $H^2$-stability. The main advantages of the proposed methods lies in that, all the computations are performed at the same element level, without the need of nested meshes and the projection of the gradient of velocity. It is showed that this discrete model is stable and has a unique branch of nonsingular solutions , given the continuous Navier-Stokes equations has an unique branch of nonsingular solutions . Moreover, error estimates are derived, and numerical experiments show that the method is valid.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065