期刊导航

论文摘要

稳态吊桥方程耦合系统正解的存在性

An existence result on positive solutions for a coupled system of steady state suspension bridge equations

作者:李涛涛(西北师范大学数学与统计学院)

Author:LI Tao-Tao(College of Mathematics and Statistics, Northwest Normal University)

收稿日期:2016-09-26          年卷(期)页码:2017,54(3):473-476

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:微分方程系统;~正解;~存在性;~Schauder~不动点定理

Key words:Differential equation systems;~Positive solutions;~Existence;~Schauder's fixed point theorem}

基金项目:国家自然科学基金

中文摘要

本文研究了二阶和四阶常微分方程耦合系统 \[ \begin{cases} &~u''''(t)=\lambda f(t,v(t)), \ \ \ \ \ t\in (0,1),\&-v''(t)=\lambda g(t,u(t)), \ \ \ \ \ t\in (0,1),\&~u(0)=u(1)=u''(0)=u''(1)=0,\&~v(0)=v(1)=0\\end{cases} \] 正解的存在性,~其中~$\lambda>0$~为参数,~$f,~g\in C([0,1]\times[0,\infty),~\mathbb{R})$.~当~$f,~g$~满足适当的条件时,~证明了~$\lambda$~充分大时,~一个正解的存在性结果,~主要结果的证明基于~Schauder~不动点定理. }

英文摘要

In this paper, we are concerned with the existence of positive solutions of a coupled system of second-order and fourth-order ordinary differential equations \[ \begin{cases} &~u''''(t)=\lambda f(t,v(t)), \ \ \ \ \ \ t\in (0,1),\&-v''(t)=\lambda g(t,u(t)), \ \ \ \ \ t\in (0,1),\&~u(0)=u(1)=u''(0)=u''(1)=0,\&~v(0)=v(1)=0,\\end{cases} \] where $\lambda$ is a positive parameter, $f,~g\in C([0,1]\times[0,\infty),~\mathbb{R})$. We prove the existence of a large positive solution for $\lambda$ large under suitable assumptions on $f$ and $g$. The proof of our main result is based upon the Schauder's fixed point theorem.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065