期刊导航

论文摘要

弹性问题线性常数元稳定化方法

A stabilized linear-constant finite element method for elasticity problem

作者:刘书琳(四川大学数学学院);胡戎(川庆地质勘探开发研究院)

Author:LIU Shu-Lin(College of Mathematics, Sichuan University);HU Rong(Geological Exploration & Development Research Institute of Chuanqing Drilling Engineering Company Limited, CNPC)

收稿日期:2016-12-08          年卷(期)页码:2017,54(3):447-451

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:弹性问题;弱inf-sup条件;稳定化

Key words:elasticity problem; weak inf-sup condition; stabilization

基金项目:

中文摘要

运用混合有限元法求解弹性问题时,由于LBB条件的限制,使得实际工程运用中常用的线性/常数元无法应用。为了克服这一困难,本文将Bochev-Dohrmann-Gunzburger稳定性方法应用在弹性问题上,通过增加新的投影稳定项和相容稳定项,提出了一种稳定化混合有限元方法。该方法的优点在于:不依赖空间维数和单元形状,也不需要计算高阶导数或边界跳跃量。

英文摘要

The commonly used linear / constant element cannot be applied in solving elasticity problem because it dissatisfy the LBB condition. In this paper, we derive a stabilization scheme for elasticity problem based on Bochev-Dohrmann-Gunzburger method. We add a consistent term and projection-type stabilization term, which can effectively bypass the inf-sup condition. The advantages of our method are: they do not depend on the space dimension, do not require calculation of higher order derivatives or edge-based data structures.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065