期刊导航

论文摘要

求解广义Rosenau-KdV-RLW方程的守恒差分格式

A conservation difference scheme for generalized Rosenau-KdV-RLW equation

作者:卓茹(西华大学理学院);李佳佳(西华大学理学院);黄妗彤(西华大学理学院);胡劲松(西华大学理学院)

Author:ZHUO Ru(School of Science, Xihua University);LI Jia-Jia(School of Science, Xihua University);HUANG Jin-Tong(School of Science, Xihua University);HU Jin-Song(School of Science, Xihua University)

收稿日期:2016-06-02          年卷(期)页码:2017,54(4):703-707

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:广义Rosenau-KdV-RLW方程; 差分格式; 守恒;收敛性;稳定性

Key words:generalized Rosenau-KdV-RLW equation; difference scheme; conservative; convergence; stability

基金项目:四川省教育厅重点基金项目(16ZA0167);西华大学重点基金项目(Z1513324)

中文摘要

本文对一类带有齐次边界条件的广义Rosenau-KdV-RLW方程的初边值问题进行了数值研究,提出了一个两层非线性Crank-Nicolson差分格式,格式合理地模拟了原问题的两个守恒性质,证明了差分解的存在唯一性,利用能量方法分析了该格式的二阶收敛性与无条件稳定性,数值实验表明该方法是可靠的。

英文摘要

In this paper, the numerical solution of initial-boundary value problem for generalized Rosenau-KdV-RLW equation with non-homogeneous boundary is considered. A nonlinear two-level Grank-Nicolson difference scheme is designed. The difference schemes simulate two conservative quantities of the problem well. The existence and uniqueness of the difference solutions are also proved. It is proved by the discrete energy method that the difference scheme is second-order convergence and unconditionally stable. Numerical experiments verify the theoretical results.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065